首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   172篇
  免费   0篇
航空   82篇
航天技术   41篇
航天   49篇
  2022年   1篇
  2021年   1篇
  2019年   2篇
  2018年   8篇
  2017年   8篇
  2016年   3篇
  2015年   2篇
  2014年   5篇
  2013年   12篇
  2012年   12篇
  2011年   8篇
  2010年   4篇
  2009年   17篇
  2008年   7篇
  2007年   11篇
  2006年   3篇
  2005年   7篇
  2003年   2篇
  2002年   1篇
  2001年   3篇
  2000年   3篇
  1999年   3篇
  1998年   7篇
  1997年   2篇
  1996年   4篇
  1995年   5篇
  1994年   6篇
  1992年   2篇
  1991年   1篇
  1990年   1篇
  1988年   1篇
  1987年   1篇
  1986年   1篇
  1985年   4篇
  1984年   3篇
  1982年   3篇
  1981年   2篇
  1972年   1篇
  1971年   2篇
  1969年   1篇
  1968年   2篇
排序方式: 共有172条查询结果,搜索用时 33 毫秒
151.
Road-map assisted ground moving target tracking   总被引:3,自引:0,他引:3  
Tracking ground targets with airborne GMTI (ground moving target indicator) sensor measurements proves to be a challenging task due to high target density, high clutter, and low visibility. The exploitation of nonstandard background information such as road maps and terrain information is therefore highly desirable for the enhancement of track quality and track continuity. The present paper presents a Bayesian approach to incorporate such information consistently. It is particularly suited to deal with winding roads and networks of roads. The target dynamics is modeled in quasi one-dimensional road coordinates and mapped onto ground coordinates using linear road segments taking road map errors into account. The case of several intersecting roads with different characteristics, such as mean curvature, slope, or visibility, is treated within an interacting multiple model (IMM) scheme. Targets can be masked both by the clutter notch of the sensor and by terrain obstacles. Both effects are modeled using a sensor-target state dependent detection probability. The iterative filter equations are formulated within a framework of Gaussian sum approximations on the one hand and a particle filter approach on the other hand. Simulation results for single targets taken from a realistic ground scenario show strongly reduced target location errors compared with the case of neglecting road-map information. By modeling the clutter notch of the GMTI sensor, early detection of stopping targets is demonstrated  相似文献   
152.
This paper presents a neural network modeling approach to forecast electron concentration distributions in the 150–600 km altitude range above Arecibo, Puerto Rico. The neural network was trained using incoherent scatter radar data collected at the Arecibo Observatory during the past two decades, as well as the Kp geomagnetic index provided by the National Space Science Data Center. The data set covered nearly two solar cycles, allowing the neural network to model daily, seasonal, and solar cycle variations of upper atmospheric parameter distributions. Two types of neural network architectures, feedforward and Elman recurrent, are used in this study. Topics discussed include the network design, training strategy, data analysis, as well as preliminary testing results of the networks on electron concentration distributions.  相似文献   
153.
It is widely believed that cometary orbits contain important clues to both the outer solar system’s current structure and its past dynamical evolution. The first part of this paper summarizes the results of numerical simulations designed to study the dynamical origins of observed comets and to link the observed populations to the reservoirs from which they are currently leaking. The second part reviews simulations which are designed to study the dynamical origin of the reservoirs themselves. The paper concludes with a brief discussion of the currently unresolved issue of where in the primordial solar nebula the different dynamical classes of observed comets originated.  相似文献   
154.
155.
The Lunar CRater Observations and Sensing Satellite (LCROSS) mission impacted a spent Centaur rocket stage into a permanently shadowed region near the lunar south pole. The Sheperding Spacecraft (SSC) separated ~9 hours before impact and performed a small braking maneuver in order to observe the Centaur impact plume, looking for evidence of water and other volatiles, before impacting itself. This paper describes the registration of imagery of the LCROSS impact region from the mid- and near-infrared cameras onboard the SSC, as well as from the Goldstone radar. We compare the Centaur impact features, positively identified in the first two, and with a consistent feature in the third, which are interpreted as a 20 m diameter crater surrounded by a 160 m diameter ejecta region. The images are registered to Lunar Reconnaisance Orbiter (LRO) topographical data which allows determination of the impact location. This location is compared with the impact location derived from ground-based tracking and propagation of the spacecraft’s trajectory and with locations derived from two hybrid imagery/trajectory methods. The four methods give a weighted average Centaur impact location of ?84.6796°, ?48.7093°, with a 1σ uncertainty of 115 m along latitude, and 44 m along longitude, just 146 m from the target impact site. Meanwhile, the trajectory-derived SSC impact location is ?84.719°, ?49.61°, with a 1σ uncertainty of 3 m along the Earth vector and 75 m orthogonal to that, 766 m from the target location and 2.803 km south-west of the Centaur impact. We also detail the Centaur impact angle and SSC instrument pointing errors. Six high-level LCROSS mission requirements are shown to be met by wide margins. We hope that these results facilitate further analyses of the LCROSS experiment data and follow-up observations of the impact region.  相似文献   
156.
Although macroscale features dominate astrophysical images and energetics, the physics is controlled through microscale transport processes (conduction, diffusion) that mediate the flow of mass, momentum, energy, and charge. These microphysical processes manifest themselves in key (all) boundary layers and also operate within the body of the plasma. Crucially, most plasmas of interest are rarefied to the extent that classical particle collision length- and time-scales are long. Collective plasma kinetic phenomena then serve to scatter or otherwise modify the particle distribution functions and in so-doing govern the transport at the microscale level. Thus collisionless plasmas are capable of supporting thin shocks, current sheets which may be prone to magnetic reconnection, and the dissipation of turbulence cascades at kinetic scales. This paper lays the foundation for the accompanying collection that explores the current state of knowledge in this subject. The richness of plasma kinetic phenomena brings with it a rich diversity of microphysics that does not always, if ever, simply mimic classical collision-dominated transport. This can couple the macro- and microscale physics in profound ways, and in ways which thus depend on the astrophysical context.  相似文献   
157.
The Pioneer anomaly, an unexpected acceleration of the Pioneer 10 and 11 spacecraft of ∼8.5 × 10−10 ms−2 directed towards the inner Solar System, has been of great interest for the physics community during the past decade: considered explanations range from new physical concepts to conventional mechanism. It is shown that non-isotropic outgassing of the complete spacecraft structure is comparable in magnitude and direction to the effect and should be considered as a significant contribution to the anomalous acceleration. Although gas leaks from e.g. the propulsion system and propulsive mass loss mechanism have been discarded as possible explanations for the anomaly, the arguments used against such mechanisms do not apply to global outgassing from the spacecraft.  相似文献   
158.
In this review we confront the current theoretical understanding of particle acceleration at relativistic outflows with recent observational results on various source classes thought to involve such outflows, e.g. gamma-ray bursts, active galactic nuclei, and pulsar wind nebulae. We highlight the possible contributions of these sources to ultra-high-energy cosmic rays.  相似文献   
159.
In his landmark article, Richard Morris (1981) introduced a set of rat experiments intended “to demonstrate that rats can rapidly learn to locate an object that they can never see, hear, or smell provided it remains in a fixed spatial location relative to distal room cues” (p. 239). These experimental studies have greatly impacted our understanding of rat spatial cognition. In this article, we address a spatial cognition model primarily based on hippocampus place cell computation where we extend the prior Barrera–Weitzenfeld model (2008) intended to allow navigation in mazes containing corridors. The current work extends beyond the limitations of corridors to enable navigation in open arenas where a rat may move in any direction at any time. The extended work reproduces Morris's rat experiments through virtual rats that search for a hidden platform using visual cues in a circular open maze analogous to the Morris water maze experiments. We show results with virtual rats comparing them to Morris's original studies with rats.  相似文献   
160.
Ten healthy subjects were eccentrically rotated with constant speed on a Barany chair. Setting of a luminous line (LL) to the subjective vertical and ocular counter-roll (OCR) were evaluated. During eccentric position rotation subjects consistently reported illusory rotation and set the LL to an angle correlating to centrifugal force. At the same time an OCR of opposite direction was measured. In one patient, labyrinthectomized on the right side, only counterclockwise rotation of the luminous line was observed. Differences between "inner" and "outer" eye were evident for luminous line settings and OCR in some subjects. The results indicate that eccentric rotation is a valuable method to test for bilateral otolith asymmetries. The method can be applied to preflight tests of astronaut candidates for susceptibility to spacesickness. It is also offered for clinical evaluation of unilateral otolith impairments.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号