首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   172篇
  免费   0篇
航空   82篇
航天技术   41篇
航天   49篇
  2022年   1篇
  2021年   1篇
  2019年   2篇
  2018年   8篇
  2017年   8篇
  2016年   3篇
  2015年   2篇
  2014年   5篇
  2013年   12篇
  2012年   12篇
  2011年   8篇
  2010年   4篇
  2009年   17篇
  2008年   7篇
  2007年   11篇
  2006年   3篇
  2005年   7篇
  2003年   2篇
  2002年   1篇
  2001年   3篇
  2000年   3篇
  1999年   3篇
  1998年   7篇
  1997年   2篇
  1996年   4篇
  1995年   5篇
  1994年   6篇
  1992年   2篇
  1991年   1篇
  1990年   1篇
  1988年   1篇
  1987年   1篇
  1986年   1篇
  1985年   4篇
  1984年   3篇
  1982年   3篇
  1981年   2篇
  1972年   1篇
  1971年   2篇
  1969年   1篇
  1968年   2篇
排序方式: 共有172条查询结果,搜索用时 31 毫秒
131.
We investigated the UV emission expected from solar coronal transients, selecting some spectral lines which will be observed with the UVCS spectrocoronagraph onboard the SOHO spacecraft. The line intensities were calculated starting from a representative, simplified model of coronal transient. We discuss how the considered intensities depend on the physical parameters of the examined structures. This work is aimed to give a contribution in defining and preparing the future observations of coronal transients and coronal mass ejections by the UVCS/SOHO.  相似文献   
132.
The interior evolution of Mercury—the innermost planet in the solar system, with its exceptional high density—is poorly known. Our current knowledge of Mercury is based on observations from Mariner 10’s three flybys. That knowledge includes the important discoveries of a weak, active magnetic field and a system of lobate scarps that suggests limited radial contraction of the planet during the last 4 billion years. We review existing models of Mercury’s interior evolution and further present new 2D and 3D convection models that consider both a strongly temperature-dependent viscosity and core cooling. These studies provide a framework for understanding the basic characteristics of the planet’s internal evolution as well as the role of the amount and distribution of radiogenic heat production, mantle viscosity, and sulfur content of the core have had on the history of Mercury’s interior. The existence of a dynamo-generated magnetic field suggests a growing inner core, as model calculations show that a thermally driven dynamo for Mercury is unlikely. Thermal evolution models suggest a range of possible upper limits for the sulfur content in the core. For large sulfur contents the model cores would be entirely fluid. The observation of limited planetary contraction (∼1–2 km)—if confirmed by future missions—may provide a lower limit for the core sulfur content. For smaller sulfur contents, the planetary contraction obtained after the end of the heavy bombardment due to inner core growth is larger than the observed value. Due to the present poor knowledge of various parameters, for example, the mantle rheology, the thermal conductivity of mantle and crust, and the amount and distribution of radiogenic heat production, it is not possible to constrain the core sulfur content nor the present state of the mantle. Therefore, it is difficult to robustly predict whether or not the mantle is conductive or in the convective regime. For instance, in the case of very inefficient planetary cooling—for example, as a consequence of a strong thermal insulation by a low conductivity crust and a stiff Newtonian mantle rheology—the predicted sulfur content can be as low as 1 wt% to match current estimates of planetary contraction, making deep mantle convection likely. Efficient cooling—for example, caused by the growth of a crust strongly in enriched in radiogenic elements—requires more than 6.5 wt% S. These latter models also predict a transition from a convective to a conductive mantle during the planet’s history. Data from future missions to Mercury will aid considerably our understanding of the evolution of its interior.  相似文献   
133.
Field conversions of many conventional VOR and VORTAC facilities to remote maintenance monitoring, which includes provisions for automated VOR ground check procedures, has been under way in the United States since 1982. A question that has arisen as a result of this effort concerns the minimum number of ground-check points that must be used in order that the bearing-error function can be resolved into its octantal as well as its quadrantal and "duantal" components. Some fundamental considerations relating to that question are examined here.  相似文献   
134.
A general set of equations is developed from which the effects of initial condition perturbations upon weapon impact point are readily evaluated. Data are presented to illustrate the accuracy with which predictions can be made. Results obtained from the actual ballistic equations, from the time-varying perturbation equations, and from a time-invariant approximation of the perturbation equations are compared. It is shown that reasonable impact point predictive accuracy can be provited for fairly large changes in initial conditions.  相似文献   
135.
Enough UV radiation was generated before z = 5 to have ionized the intergalactic medium. If this comes from stars (probably aggregated in systems of subgalactic scale), one straightforwardly calculates that the associated nucleosynthesis would be sufficient to produce a universal abundance of order 1 percent of solar. The first pre-galaxies may eventually be detectable by their direct UV emission, with characteristic spectral features at Lyman alpha; high-z supernovae may also be detectable. Other probes of the IGM beyond z = 5, and of the epochs of reheating and reionization, are discussed, along with possible links between the diffusion of pregalactic metals and the origin of magnetic fields.  相似文献   
136.
The Radiation Assessment Detector (RAD) Investigation   总被引:1,自引:0,他引:1  
The Radiation Assessment Detector (RAD) on the Mars Science Laboratory (MSL) is an energetic particle detector designed to measure a broad spectrum of energetic particle radiation. It will make the first-ever direct radiation measurements on the surface of Mars, detecting galactic cosmic rays, solar energetic particles, secondary neutrons, and other secondary particles created both in the atmosphere and in the Martian regolith. The radiation environment on Mars, both past and present, may have implications for habitability and the ability to sustain life. Radiation exposure is also a major concern for future human missions. The RAD instrument combines charged- and neutral-particle detection capability over a wide dynamic range in a compact, low-mass, low-power instrument. These capabilities are required in order to measure all the important components of the radiation environment. RAD consists of the RAD Sensor Head (RSH) and the RAD Electronics Box (REB) integrated together in a small, compact volume. The RSH contains a solid-state detector telescope with three silicon PIN diodes for charged particle detection, a thallium doped Cesium Iodide scintillator, plastic scintillators for neutron detection and anti-coincidence shielding, and the front-end electronics. The REB contains three circuit boards, one with a novel mixed-signal ASIC for processing analog signals and an associated control FPGA, another with a second FPGA to communicate with the rover and perform onboard analysis of science data, and a third board with power supplies and power cycling or “sleep”-control electronics. The latter enables autonomous operation, independent of commands from the rover. RAD is a highly capable and highly configurable instrument that paves the way for future compact energetic particle detectors in space.  相似文献   
137.
高效的驱动系统需要精确的位置信息.一种特殊的光栅鼓栅线制造工艺和独特的扫描原理使海德汉新系列的角度编码器具有很高的精度.  相似文献   
138.
Differences between the dynamical characteristics of the northern hemisphere (NH) and southern hemisphere (SH) stratosphere (e.g., the temperature, the strength of polar vortex, and the mean meridional circulation) produce hemispherically asymmetrical distributions of chemical species. In this paper, we use global models to briefly discuss various effects on chemical species caused by this asymmetrical distribution, especially on stratospheric ozone. The role of hemispheric asymmetries in chlorine and bromine loadings on mid- and high latitude ozone depletion is particularly discussed.  相似文献   
139.
We present the design, implementation, and on-ground performance measurements of the Ionospheric Connection Explorer EUV spectrometer, ICON EUV, a wide field (\(17^{\circ}\times 12^{\circ}\)) extreme ultraviolet (EUV) imaging spectrograph designed to observe the lower ionosphere at tangent altitudes between 100 and 500 km. The primary targets of the spectrometer, which has a spectral range of 54–88 nm, are the Oii emission lines at 61.6 nm and 83.4 nm. Its design, using a single optical element, permits a 0 . ° 26 Open image in new window imaging resolution perpendicular to the spectral dispersion direction with a large (\(12^{\circ} \)) acceptance parallel to the dispersion direction while providing a slit-width dominated spectral resolution of \(R\sim25\) at 58.4 nm. Pre-flight calibration shows that the instrument has met all of the science performance requirements.  相似文献   
140.
The MEAP (Mars Environment Analogue Platform) mission was to fly a stratospheric balloon on a semicircular trajectory around the North Pole in summer 2008. The balloon platform carried the high-resolution neutral gas mass spectrometer P-BACE (Polar Balloon Atmospheric Composition Experiment) as scientific payload. MEAP/P-BACE is a joint project between the Esrange Space Center, Sweden, the University of Bern, Switzerland and the Swedish Institute of Space Physics (IRF), Kiruna, Sweden. Mission objectives were to validate the platform for future long duration flights around the North pole, to validate the P-BACE instrument design for planetary mission applications (conditions in the Earth stratosphere are similar to the conditions at the Mars surface), to study variation of the stratospheric composition during the flight and to gain experience in balloon based mass spectrometry. All objectives were fulfilled.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号