首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   33篇
  免费   0篇
航空   16篇
航天技术   7篇
航天   10篇
  2018年   1篇
  2016年   4篇
  2014年   2篇
  2013年   4篇
  2012年   2篇
  2011年   2篇
  2010年   2篇
  2009年   2篇
  2008年   1篇
  2007年   4篇
  2006年   1篇
  2002年   2篇
  1999年   2篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
  1994年   1篇
排序方式: 共有33条查询结果,搜索用时 0 毫秒
31.
This paper proposes a suitable orbit design for the lower pair of ESA's Swarm constellation mission, flying side-by-side in near-polar and circular orbits with a separation of only 1.4° at ascending node. Both orbits are suggested to be frozen orbits to minimize the evolution, and an along-track separation strategy is applied to avoid collision risk. The characteristics of the proposed orbit type are examined through numerical techniques including high-fidelity perturbation models. The prime change from the initial configuration is an along-track separation. The perturbations causing the along-track drift are analyzed by switching on/off certain perturbations. The results indicate that the tesseral harmonics and the atmospheric drag yield dominant effects. The atmospheric drag effect shows a dependence on the local time of the ascending node. From two months of orbit propagation for the altitude 300 km the maximum along-track drift we obtain is about 80 km, which is still within the measurement requirement range. Several maneuver strategies for maintaining the proposed orbit design are suggested. The results analyzed for the proposed orbit design show that collision risk can be avoided by along-track separation within the frozen orbit design. Consequently, this combination is considered as a suitable approach for Swarm's lower pair.  相似文献   
32.
In this study we explore physical scaling laws applied to solar nanoflares, microflares, and large flares, as well as to stellar giant flares. Solar flare phenomena exhibit a fractal volume scaling, V(L)  L1.9, with L being the flare loop length scale, which explains the observed correlation between the total emission measure EMp and flare peak temperature Tp in both solar and stellar flares. However, the detected stellar flares have higher emission measures EMp than solar flares at the same flare peak temperature Tp, which can be explained by a higher electron density that is caused by shorter heating scale height ratios sH/L ≈ 0.04–0.1. Using these scaling laws we calculate the total radiated flare energies EX and thermal flare energies ET and find that the total counts C are a good proxy for both parameters. Comparing the energies of solar and stellar flares we find that even the smallest observed stellar flares exceed the largest solar flares, and thus their observed frequency distributions are hypothetically affected by an upper cutoff caused by the maximum active region size limit. The powerlaw slopes fitted near the upper cutoff can then not reliably be extrapolated to the microflare regime to evaluate their contribution to coronal heating.  相似文献   
33.
We transition from two-dimensional (2D) imaging observations of kink-mode loop oscillations in the solar corona to three-dimensional (3D) reconstructions by exploring two new methods: (1) De-projection of 2D loop tracings using the strategy of curvature radius maximization in 3D space, based on the assumption of force-free magnetic fields; and (2) stereoscopic triangulation of epipolar loop coordinates using coaligned images from the STEREO EUVI/A and B spacecraft. Both methods reveal new features of oscillating loops: non-circularity, non-planarity, and helical geometries. We extend the 3D reconstruction techniques into the time domain and find indications of circularly polarized (helical) kink-mode oscillations, in contrast to linearly polarized modes assumed previously. We discuss also hydrodynamic effects of coronal loops in non-equilibrium state that are essential for the detection and modeling of kink-mode oscillations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号