首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5700篇
  免费   9篇
  国内免费   29篇
航空   2575篇
航天技术   2170篇
综合类   19篇
航天   974篇
  2021年   54篇
  2019年   40篇
  2018年   119篇
  2017年   81篇
  2016年   71篇
  2015年   25篇
  2014年   126篇
  2013年   163篇
  2012年   155篇
  2011年   228篇
  2010年   147篇
  2009年   257篇
  2008年   317篇
  2007年   168篇
  2006年   145篇
  2005年   174篇
  2004年   178篇
  2003年   198篇
  2002年   123篇
  2001年   183篇
  2000年   128篇
  1999年   139篇
  1998年   158篇
  1997年   125篇
  1996年   153篇
  1995年   198篇
  1994年   178篇
  1993年   93篇
  1992年   144篇
  1991年   49篇
  1990年   51篇
  1989年   127篇
  1988年   40篇
  1987年   40篇
  1986年   58篇
  1985年   172篇
  1984年   131篇
  1983年   105篇
  1982年   131篇
  1981年   154篇
  1980年   45篇
  1979年   30篇
  1978年   37篇
  1977年   36篇
  1976年   29篇
  1975年   26篇
  1974年   34篇
  1973年   25篇
  1970年   27篇
  1969年   24篇
排序方式: 共有5738条查询结果,搜索用时 15 毫秒
821.
To obtain basic data on adequate air circulation to enhance plant growth in a closed plant culture system in a controlled ecological life support system (CELSS), an investigation was made of the effects of the air current speed ranging from 0.01 to 1.0 m s-1 on photosynthesis and transpiration in sweetpotato leaves and photosynthesis in tomato seedlings canopies. The gas exchange rates in leaves and canopies were determined by using a chamber method with an infrared gas analyzer. The net photosynthetic rate and the transpiration rate increased significantly as the air current speeds increased from 0.01 to 0.2 m s-1. The transpiration rate increased gradually at air current speeds ranging from 0.2 to 1.0 m s-1 while the net photosynthetic rate was almost constant at air current speeds ranging from 0.5 to 1.0 m s-1. The increase in the net photosynthetic and transpiration rates were strongly dependent on decreased boundary-layer resistances against gas diffusion. The net photosynthetic rate of the plant canopy was doubled by an increased air current speed from 0.1 to 1.0 m s-1 above the plant canopy. The results demonstrate the importance of air movement around plants for enhancing the gas exchange in the leaf, especially in plant canopies in the CELSS.  相似文献   
822.
Titan’ atmosphere shows some similarities with that of the Earth, in terms of composition and surface pressure. Also, its seasonal cycle is similar, as Titan’ obliquity is about 27°(23°,5 for the Earth), although it is about 30 times as long. Titan’ haze exhibits an albedo contrast (NSA for North-South Asymmetry) that is changing seasonally. From the analysis of Voyager and Hubble Space Telescope data, we learned that at short visible wavelengths, the albedo of the winter hemisphere is lower by 10-20% than that of the summer hemisphere. This asymmetry peaks at 450 nm and reaches maximum amplitude around Titan’ equinoxes. It reverses in about five years, faster than a season which spans seven years. At longer wavelengths, longward of 700 nm, the asymmetry is inverted. The NSA reversal process in the red and in the UV seems to lead the reversal in the blue by 1 or 2 years. No valid explanation exists for this lag, at least in the red. The results from a recent model which couples atmospheric dynamics, haze microphysics and transport, as well as photochemistry, show that the NSA and its seasonal changes can be explained by an accumulation of haze particles at the winter pole. This is due to the pole-to-pole Hadley circulation pattern that is present during most of Titan’ year and rapidly disrupts at the time of the equinoxes. This model can also explain the observed cooler stratospheric temperatures and higher abundances of heavy hydrocarbons and nitriles in the winter polar region. In addition, it provides a mechanism for the formation of a detached haze layer around 300–400 km altitude, as well as the existence of a polar hood. Thus, it appears that the latitudinal contrasts we observe on Titan are conveniently tracing for us the dynamical behavior of its atmosphere.  相似文献   
823.
This paper presents the European Space Operations Centre's orbit determination and prediction systems for the ERS-1 mission. The routine operational orbit determination and prediction subsystem is discussed briefly, and statistics of the accuracy compared to the requirements are given. The precise orbit determination subsystem is then described, and the accuracy of its results are compared to those of the operational orbit system and to the D-PAF preliminary orbit solutions. Some geophysical results from the altimeter data, processed in these orbit determinations, are also presented. The ESOC/OAD ‘ERS-1 Orbit Report’ is introduced as a document providing this information on a monthly basis. Finally, this paper describes how the experience gained with the precise orbit determination will be exploited to further improve the accuracy of the routine system that will be used for ERS-2, and provides an estimate of this accuracy.  相似文献   
824.
In the 25 months since Jupiter flyby, the Ulysses spacecraft has climbed southward to a heliolatitude of 56°. This transit has been marked by an evolution from slow, dense coronal streamer belt solar wind through two regions where the rotation of the Sun carried Ulysses back and forth between streamer belt and polar coronal hole flows, and finally into a region of essentially continuous fast, low density solar wind from the southern polar coronal hole. Throughout these large changes, the momentum flux normalized to 1 AU displays very little systematic variation. In addition, the bulk properties of the polar coronal hole solar wind are quite similar to those observed in high speed streams in the ecliptic plane at 1 AU. Coronal mass ejections and forward and reverse shocks associated with corotating interaction regions have also been observed at higher heliolatitudes, however they are seen less frequently with increasing southern heliolatitude. Ulysses has thus far collected data from 20° of nearly contiguous solar wind flows from the polar coronal hole. We examine these data for characteristic variations with heliolatitude and find that the bulk properties in general show very little systematic variation across the southern polar coronal hole so far.  相似文献   
825.
Ballistic missile track initiation from satellite observations   总被引:3,自引:0,他引:3  
An algorithm is presented to initiate tracks of a ballistic missile in the initial exoatmospheric phase, using line of sight (LOS) measurements from one or more moving platforms (typically satellites). The major feature of this problem is the poor target motion observability which results in a very ill-conditioned estimation problem. The Gauss-Newton iterative least squares minimization algorithm for estimating the state of a nonlinear deterministic system with nonlinear noisy measurements has been previously applied to the problem of angles-only orbit determination using more than three observations. A major shortcoming of this approach is that convergence of the algorithm depends strongly on the initial guess. By using the more sophisticated Levenberg-Marquardt method in place of the simpler Gauss-Newton algorithm and by developing robust new methods for obtaining the initial guess in both single and multiple satellite scenarios, the above mentioned difficulties have been overcome. In addition, an expression for the Cramer-Rao lower bound (CRLB) on the error covariance matrix of the estimate is derived. We also incorporate additional partial information as an extra pseudomeasurement and determine a modified maximum likelihood (ML) estimate of the target state and the associated bound on the covariance matrix. In most practical situations, probabilistic models of the target altitude and/or speed at the initial point constitute the most useful additional information. Monte Carlo simulation studies on some typical scenarios were performed, and the results indicate that the estimation errors are commensurate with the theoretical lower bounds, thus illustrating that the proposed estimators are efficient  相似文献   
826.
The first European mission to Venus (Venus Express) is described. It is based on a repeated use of the Mars Express design with minor modifications dictated in the main by more severe thermal environment at Venus. The main scientific task of the mission is global exploration of the Venusian atmosphere, circumplanetary plasma, and the planet surface from an orbiting spacecraft. The Venus Express payload includes seven instruments, five of which are inherited from the missions Mars Express and Rosetta. Two instruments were specially designed for Venus Express. The advantages of Venus Express in comparison with previous missions are in using advanced instrumentation and methods of remote sounding, as well as a spacecraft with a broad spectrum of capabilities of orbital observations.  相似文献   
827.
Chromosomal intrachanges induced by swift iron ions.   总被引:1,自引:0,他引:1  
We measured the induction of structural aberrations in human chromosome 5 induced by iron ions using the novel technique of multicolor banding in situ hybridization (mBAND). Human lymphocytes isolated from whole blood were exposed in vitro to 500 MeV/n (LET=200 keV/micrometers, doses 1 or 4 Gy) Fe nuclei at the HIMAC accelerator in Chiba (Japan). Chromosomes were prematurely condensed by calyculin A after 48 h in culture and slides were painted by mBAND. We found a frequency of 0.11 and 0.57 residual breakpoints per chromosome 5 after 1 and 4 Gy Fe-ions, respectively. Inter-chromosomal exchanges were the prevalent aberration type measured at both doses, followed by terminal deletions, and by intra-chromosomal exchanges. Among intra-chromosomal exchanges, intra-arm events were more frequent than inter-arm, but a significant number of intra-changes was associated to inter-changes involving the same chromosome after 4 Gy of iron ions. These events show that the complexity of chromosomal exchanges induced by heavy ions can be higher than expected by previous FISH studies.  相似文献   
828.
Gravity plays a role in many different levels of human motor behavior. It dictates the laws of motion of our body and limbs, as well as of the objects in the external world with which we wish to interact. The dynamic interaction of our body with the world is molded within gravity's constraints. The role played by gravity in the perception of visual stimuli and the elaboration of human movement is an active research theme in the field of Neurophysiology. Conditions of microgravity, coupled with techniques from the world of virtual reality, provide a unique opportunity to address these questions concerning the function of the human sensorimotor system. The ability to measure movements of the head and to update in real time the visual scene presented to the subject based on these measurements is a key element in producing a realistic virtual environment. A variety of head-tracking hardware exists on the market today, but none seem particularly well suited to the constraints of working with a space station environment. Nor can any of the existing commercial systems meet the more stringent requirements for physiological experimentation (high accuracy, high resolution, low jitter, low lag) in a wireless configuration. To this end, we have developed and tested a hybrid opto-inertial 6 degree-of-freedom tracker based on existing inertial technology. To confirm that the inertial components and algorithms will function properly, this system was tested in the microgravity conditions of parabolic flight. Here we present the design goals of this tracker, the system configuration and the results of 0g and 1g testing.  相似文献   
829.
Pivotal to the astronauts' functional integrity and survival during long space flights are the strategies to deal with space radiations. The majority of the cellular studies in this area emphasize simple endpoints such as growth related events which, although useful to understand the nature of primary cell injury, have poor predictive value for extrapolation to more complex tissues such as the central nervous system (CNS). In order to assess the radiation damage on neural cell populations, we developed an in vitro model in which neuronal differentiation, neurite extension, and synaptogenesis occur under controlled conditions. The model exploits chick embryo neural explants to study the effects of radiations on neuritogenesis. In addition, neurobiological problems associated with long-term space flights are discussed.  相似文献   
830.
The use of wireless power transmission in Space Solar Power (SSP) activities creates significant policy issues regarding the beam right-of-way. There will not be a single beam, there may well be hundreds of beams for economical systems. Are some or all of these power beams to be afforded priorities of space for unobstructed power delivery, or must the beaming systems be designed to be capable of detecting any and all potential beam interceptions and appropriately responding? The repeated interruptions for guaranteed safety of transit for freely moving air and space traffic are of great consequence. The safety issues are critical, but the implications for equipment transient protection, energy storage system costs and the quality of power delivery service are also significant for wireless power transmission economics. A scenario of precursor wireless power transmission developments leading up to and including SSP applications will be used to frame and to discuss the beamed power technology implications and policy issues.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号