全文获取类型
收费全文 | 5717篇 |
免费 | 19篇 |
国内免费 | 27篇 |
专业分类
航空 | 2587篇 |
航天技术 | 2182篇 |
综合类 | 20篇 |
航天 | 974篇 |
出版年
2021年 | 56篇 |
2019年 | 43篇 |
2018年 | 123篇 |
2017年 | 83篇 |
2016年 | 74篇 |
2015年 | 26篇 |
2014年 | 126篇 |
2013年 | 165篇 |
2012年 | 155篇 |
2011年 | 229篇 |
2010年 | 147篇 |
2009年 | 259篇 |
2008年 | 314篇 |
2007年 | 168篇 |
2006年 | 145篇 |
2005年 | 174篇 |
2004年 | 178篇 |
2003年 | 198篇 |
2002年 | 123篇 |
2001年 | 183篇 |
2000年 | 128篇 |
1999年 | 139篇 |
1998年 | 158篇 |
1997年 | 125篇 |
1996年 | 153篇 |
1995年 | 197篇 |
1994年 | 178篇 |
1993年 | 93篇 |
1992年 | 144篇 |
1991年 | 49篇 |
1990年 | 51篇 |
1989年 | 127篇 |
1988年 | 41篇 |
1987年 | 41篇 |
1986年 | 58篇 |
1985年 | 172篇 |
1984年 | 132篇 |
1983年 | 106篇 |
1982年 | 132篇 |
1981年 | 154篇 |
1980年 | 45篇 |
1979年 | 30篇 |
1978年 | 37篇 |
1977年 | 36篇 |
1976年 | 29篇 |
1975年 | 26篇 |
1974年 | 34篇 |
1973年 | 25篇 |
1970年 | 27篇 |
1969年 | 24篇 |
排序方式: 共有5763条查询结果,搜索用时 15 毫秒
941.
We consider the stability of stationary motions of a model of a spacecraft as a system of coaxial bodies with small asymmetry caused by the shift of the axes of dynamic symmetry of bodies relative to the axis of rotation. We determine the stationary motions of the system; their stability is studied with respect to both the projections of angular velocity and the position of the axis of rotation. The sufficient conditions for the stability of these stationary motions are obtained by constructing a Lyapunov function, and the necessary conditions are obtained by analyzing the corresponding linearized equations of perturbed motion. 相似文献
942.
V. A. Sadovnichiy A. M. Amelyushkin V. Angelopoulos V. V. Bengin V. V. Bogomolov G. K. Garipov E. S. Gorbovskoy B. Grossan P. A. Klimov B. A. Khrenov J. Lee V. M. Lipunov G. W. Na M. I. Panasyuk I. H. Park V. L. Petrov C. T. Russell S. I. Svertilov E. A. Sigaeva G. F. Smoot Yu. Shprits N. N. Vedenkin I. V. Yashin 《Cosmic Research》2013,51(6):427-433
At present, the Institute of Nuclear Physics of Moscow State University, in cooperation with other organizations, is preparing space experiments onboard the Lomonosov satellite. The main goal of this mission is to study extreme astrophysical phenomena such as cosmic gamma-ray bursts and ultra-high-energy cosmic rays. These phenomena are associated with the processes occurring in the early universe in very distant astrophysical objects, therefore, they can provide information on the first stages of the evolution of the universe. This paper considers the main characteristics of the scientific equipment aboard the Lomonosov satellite. 相似文献
943.
Peter C. Thomas Joseph Veverka Michael F. A’Hearn Lucy Mcfadden Michael J. S. Belton Jessica M. Sunshine 《Space Science Reviews》2005,117(1-2):193-205
The Deep Impact mission will provide the highest resolution images yet of a comet nucleus. Our knowledge of the makeup and
structure of cometary nuclei, and the processes shaping their surfaces, is extremely limited, thus use of the Deep Impact
data to show the geological context of the cratering experiment is crucial. This article briefly discusses some of the geological
issues of cometary nuclei. 相似文献
944.
V. A. Sorokin N. N. Zakharov M. S. Sharov L. S. Yanovskii 《Russian Aeronautics (Iz VUZ)》2010,53(3):295-302
The results of experimental investigations of gasodynamic characteristics of a combustion chamber model in the integrated power plant (IPP) with an asymmetric air intake are presented. The influence of an angle of air supply into the chamber model on hydraulic losses and the flow structure is shown at different air flowrates, relative values of the minimal flow section area of the feeding air intake pipes, under changes of the flowrate of gas simulating gas generation products and geometric model parameters. A technique for measuring the concentration of carbon dioxide simulating IPP gas generation products in the combustion chamber air flow and the results of experimental investigations of a mixture formation process in the combustion chamber model are described. 相似文献
945.
L. A. Frank K. L. Ackerson J. A. Lee M. R. English G. L. Pickett 《Space Science Reviews》1992,60(1-4):283-304
The plasma instrumentation (PLS) for the Galileo Mission comprises a nested set of four spherical-plate electrostatic analyzers and three miniature, magnetic mass spectrometers. The three-dimensional velocity distributions of positive ions and electrons, separately, are determined for the energy-per-unit charge (E/Q) range of 0.9 V to 52 kV. A large fraction of the 4-steradian solid angle for charged particle velocity vectors is sampled by means of the fan-shaped field-of-view of 160°, multiple sensors, and the rotation of the spacecraft spinning section. The fields-of-view of the three mass spectrometers are respectively directed perpendicular and nearly parallel and anti-parallel to the spin axis of the spacecraft. These mass spectrometers are used to identify the composition of the positive ion plasmas, e.g., H+, O+, Na+, and S+, in the Jovian magnetosphere. The energy range of these three mass spectrometers is dependent upon the species. The maximum temporal resolutions of the instrument for determining the energy (E/Q) spectra of charged particles and mass (M/Q) composition of positive ion plasmas are 0.5 s. Three-dimensional velocity distributions of electrons and positive ions require a minimum sampling time of 20 s, which is slightly longer than the spacecraft rotation period. The two instrument microprocessors provide the capability of inflight implementation of operational modes by ground-command that are tailored for specific plasma regimes, e.g., magnetosheath, plasma sheet, cold and hot tori, and satellite wakes, and that can be improved upon as acquired knowledge increases during the tour of the Jovian magnetosphere. Because the instrument is specifically designed for measurements in the environs of Jupiter with the advantages of previous surveys with the Voyager spacecraft, first determinations of many plasma phenomena can be expected. These observational objectives include field-aligned currents, three-dimensional ion bulk flows, pickup ions from the Galilean satellites, the spatial distribution of plasmas throughout most of the magnetosphere and including the magnetotail, and ion and electron flows to and from the Jovian ionosphere. 相似文献
946.
M. Tátrallyay G. Erdős A. Balogh I. Dandouras 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2008,41(10):1537-1544
Two orbits were selected in January–February 2006 when the separation between the Cluster spacecraft was large and mirror type magnetic field fluctuations were observed by all spacecraft in different regions of the terrestrial magnetosheath. Minimum variance analysis was applied to find the mirror type fluctuations, and the amplitude of the fluctuations was determined individually. Mirror mode structures are moving along the streamlines frozen in the plasma. A model was developed for the calculation of plasma flowtime from the bow shock to the observation point. The growth rate of the field strength perturbations was estimated by comparing the amplitudes of fluctuations observed simultaneously at distant locations (∼10,000 km) based on the assumption that δB ∼ exp(γt). The obtained growth rate values were about an order of magnitude smaller than those provided by linear models and they decreased in the inner regions of the magnetosheath, indicating some saturation in the growth of the waves when proceeding towards the magnetopause. The results of these two case studies suggest that mirror type fluctuations originate from the compression region downstream of the quasi-perpendicular bow shock, and the growth of the fluctuations cannot be described by linear approximations. 相似文献
947.
D P Hader M Lebert P Richter 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1998,21(8-9):1277-1284
Gravitactic orientation in the flagellate Euglena gracilis is mediated by an active physiological receptor rather than a passive alignment of the cells. During a recent space flight on the American shuttle Columbia the cells were subjected to different accelerations between 0 and 1.5 x g and tracked by computerized real-time image analysis. The dependence of orientation on acceleration followed a sigmoidal curve with a threshold at < or = 0.16 x g and a saturation at about 0.32 x g. No adaptation of the cells to the conditions of weightlessness was observed over the duration of the space mission (12 days). Under terrestrial conditions graviorientation was eliminated when the cells were suspended in a medium the density of which (Ficoll) equaled that of the cell body (1.04 g/ml) and was reversed at higher densities indicating that the whole cytoplasm exerts a pressure on the respective lower membrane. There it probably activates stretch-sensitive calcium specific ion channels since gravitaxis can be affected by gadolinium which is a specific inhibitor of calcium transport in these structures. The sensory transduction chain could involve modulation of the membrane potential since ion channel blockers, ionophores and ATPase inhibitors impair graviperception. 相似文献
948.
949.
J.L. Hall D. Fairbrother T. Frederickson V.V. Kerzhanovich M. Said C. Sandy J. Ware C. Willey A.H. Yavrouian 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2008
This paper describes the design, fabrication and testing of a full scale prototype balloon intended for long duration flight in the upper atmosphere of Venus. The balloon is 5.5 m in diameter and is designed to carry a 45 kg payload at an altitude of 55 km. The balloon material is a 180 g/m2 multi-component laminate comprised of the following layers bonded together from outside to inside: aluminized Teflon film, aluminized Mylar film, Vectran fabric and a polyurethane coating. This construction provides the required balloon functional characteristics of low gas permeability, sulfuric acid resistance and high strength for superpressure operation. The design burst superpressure is 39,200 Pa which is predicted to be 3.3 times the worst case value expected during flight at the highest solar irradiance in the mission profile. The prototype is constructed from 16 gores with bi-taped seams employing a sulfuric acid resistant adhesive on the outside. Material coupon tests were performed to evaluate the optical and mechanical characteristics of the laminate. These were followed by full prototype tests for inflation, leakage and sulfuric acid tolerance. The results confirmed the suitability of this balloon design for use at Venus in a long duration mission. The various data are presented and the implications for mission design and operation are discussed. 相似文献
950.
M. Kawaji R.Q. Liang M. Nasr-Esfahany S. Simic-Stefani S. Yoda 《Acta Astronautica》2006,58(12):622-632
The effects of small vibrations on Marangoni convection were investigated experimentally using a liquid bridge of 5 cSt silicone oil with a disk diameter of 7.0 mm, and an aspect ratio close to 0.5. Experiments were performed to determine the critical temperature difference data for no vibration case and with small vibrations applied. The experimental results have shown that the effect of small vibrations on the onset of oscillatory flow is small since the critical temperature difference data for different aspect ratios were not affected by the vibrations. To clarify the surface oscillation phenomena induced by external vibrations, a 3-D numerical simulation model was also developed using a level set algorithm to predict the surface oscillations of isothermal silicone oil bridges. By subjecting the liquid bridge to small vibrations, the surface oscillation characteristics were predicted numerically, and the numerical results compared well with the predictions of an analytical model proposed previously. Furthermore, the effect of small vibrations on the surface vibration amplitude of the liquid bridge is also discussed. 相似文献