首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5777篇
  免费   10篇
  国内免费   32篇
航空   2604篇
航天技术   2203篇
综合类   19篇
航天   993篇
  2021年   57篇
  2019年   44篇
  2018年   122篇
  2017年   82篇
  2016年   72篇
  2015年   25篇
  2014年   135篇
  2013年   166篇
  2012年   160篇
  2011年   241篇
  2010年   151篇
  2009年   265篇
  2008年   316篇
  2007年   170篇
  2006年   147篇
  2005年   174篇
  2004年   180篇
  2003年   201篇
  2002年   125篇
  2001年   186篇
  2000年   129篇
  1999年   142篇
  1998年   159篇
  1997年   125篇
  1996年   155篇
  1995年   197篇
  1994年   178篇
  1993年   94篇
  1992年   144篇
  1991年   50篇
  1990年   51篇
  1989年   128篇
  1988年   41篇
  1987年   41篇
  1986年   58篇
  1985年   173篇
  1984年   131篇
  1983年   106篇
  1982年   131篇
  1981年   155篇
  1980年   45篇
  1979年   30篇
  1978年   37篇
  1977年   36篇
  1976年   29篇
  1975年   26篇
  1974年   34篇
  1973年   25篇
  1970年   27篇
  1969年   24篇
排序方式: 共有5819条查询结果,搜索用时 15 毫秒
201.
Frequency measurements made at a moving platform can be used to locate an emitter. An error ellipsoid analysis is used to compare the performance under three levels of a priori information on the emitter's altitude: (1) no knowledge, (2) terrain data, and (3) complete knowledge of the emitter's altitude. The analysis is performed for two simple platform paths that provide frequency measurements that are approximately time reversed versions of one another. When no a priori knowledge is available there is little difference between the performance when the platform maneuvers on a concave circular path or on a convex circular path and the performance depends very Little on the platform altitude. However, when some a priori altitude information is available the performance is markedly different on the two paths and is highly dependent on the platform altitude. Thus, this analysis provides the unexpected result that for seemingly similar platform paths, the performance can vary markedly when the emitter altitude is assumed known. Also, an interesting result is that for some cases it is possible to achieve better x-y accuracy when using terrain data than when the emitter's z location is known, because the terrain data provides terrain slope information. These cases are characterized in terms of the terrain slope at the emitter  相似文献   
202.
Adaptive beamforming is used to enhance the detection of target echoes received by high frequency (HF) surface wave (HFSW) over-the-horizon (OTH) radars in the presence of spatially structured interference. External interference from natural and man-made sources typically masks the entire range-Doppler search space and is characterized by a spatial covariance matrix that is time-varying or nonstationary over the coherent processing interval (CPI). Adaptive beamformers that update the spatial filtering weight vector within the CPI are likely to suppress such interference most effectively, but the intra-CPI antenna pattern fluctuations result in temporal decorrelation of the clutter which severely degrades subclutter visibility after Doppler processing. A robust adaptive beamformer that effectively suppresses spatially nonstationary interference without degrading subclutter visibility is proposed here. The proposed algorithm is computationally efficient and suitable for practical implementation. Its operational performance is evaluated using experimental data recorded by the Iluka HFSW OTH radar, located near Darwin in far north Australia.  相似文献   
203.
Langmuir waves and turbulence resulting from an electron beam-plasma instability play a fundamental role in the generation of solar radio bursts. We report recent theoretical advances in nonlinear dynamics of Langmuir waves. First, starting from the generalized Zakharov equations, we study the parametric excitation of solar radio bursts at the fundamental plasma frequency driven by a pair of oppositely propagating Langmuir waves with different wave amplitudes. Next, we briefly discuss the emergence of chaos in the Zakharov equations. We point out that chaos can lead to turbulence in the source regions of solar radio emissions. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
204.
A model for production of episodic -ray event at interaction of a moving gas target with, a beam of relativistic particles is proposed. The typical duration of -ray emission is limited by the flight time of the target across the beam as well as by the time of destruction and/or expulsion of the target by luminous beam. The time-dependent radiation spectra of the expanding and moving gas cloud irradiated by the beam are calculated for the galactic binary systems Her X-1 and AE Aquarii which are reported as episodic -ray emitters at very high energies. Some predictions and observational tests for the model are discussed.On leave from Yerevan Physics Institute, Armenia  相似文献   
205.
We present up-to-date evolutionary models of low-mass stars, from M0.6 M down to the hydrogen burning minimum mass, using recent equation of state and synthetic spectra calculations. Comparison is made with observed luminosity function for these objects. We also present implications for the dark-matter distribution in the galactic halo.  相似文献   
206.
Ulysses plasma observations reveal that the forward shocks that commonly bound the leading edges of corotating interaction regions (CIRs) beyond 2 AU from the Sun at low heliographic latitudes nearly disappeared at a latitude of S26°. On the other hand, the reverse shocks that commonly bound the trailing edges of the CIRs were observed regularly up to S41.5°, but became weaker with increasing latitude. Only three CIR shocks have been observed poleward of S41.5°; all of these were weak reverse shocks. The above effects are a result of the forward waves propagating to lower heliographic latitudes and the reverse waves to higher latitudes with increasing heliocentric distance. These observational results are in excellent agreement with the predictions of a global model of solar wind flows that originate in a simple tilted-dipole geometry back at the Sun.  相似文献   
207.
This instrument is designed to make measurements of the full three-dimensional distribution of suprathermal electrons and ions from solar wind plasma to low energy cosmic rays, with high sensitivity, wide dynamic range, good energy and angular resolution, and high time resolution. The primary scientific goals are to explore the suprathermal particle population between the solar wind and low energy cosmic rays, to study particle accleration and transport and wave-particle interactions, and to monitor particle input to and output from the Earth's magnetosphere.Three arrays, each consisting of a pair of double-ended semi-conductor telescopes each with two or three closely sandwiched passivated ion implanted silicon detectors, measure electrons and ions above 20 keV. One side of each telescope is covered with a thin foil which absorbs ions below 400 keV, while on the other side the incoming <400 keV electrons are swept away by a magnet so electrons and ions are cleanly separated. Higher energy electrons (up to 1 MeV) and ions (up to 11 MeV) are identified by the two double-ended telescopes which have a third detector. The telescopes provide energy resolution of E/E0.3 and angular resolution of 22.5°×36°, and full 4 steradian coverage in one spin (3 s).Top-hat symmetrical spherical section electrostatic analyzers with microchannel plate detectors are used to measure ions and electrons from 3 eV to 30 keV. All these analyzers have either 180° or 360° fields of view in a plane, E/E0.2, and angular resolution varying from 5.6° (near the ecliptic) to 22.5°. Full 4 steradian coverage can be obtained in one-half or one spin. A large and a small geometric factor analyzer measure ions over the wide flux range from quiet-time suprathermal levels to intense solar wind fluxes. Similarly two analyzers are used to cover the wide range of electron fluxes. Moments of the electron and ion distributions are computed on board.In addition, a Fast Particle Correlator combines electron data from the high sensitivity electron analyzer with plasma wave data from the WAVE experiment (Bougeretet al., in this volume) to study wave-particle interactions on fast time scales. The large geometric factor electron analyzer has electrostatic deflectors to steer the field of view and follow the magnetic field to enhance the correlation measurements.  相似文献   
208.
The plasma environment of comet 67P/Churyumov-Gerasimenko, the Rosetta mission target comet, is explored over a range of heliocentric distances throughout the mission: 3.25 AU (Rosetta instruments on), 2.7 AU (Lander down), 2.0 AU, and 1.3 AU (perihelion). Because of the large range of gas production rates, we have used both a fluid-based magnetohydrodynamic (MHD) model as well as a semi-kinetic hybrid particle model to study the plasma distribution. We describe the variation in plasma environs over the mission as well as the differences between the two modeling approaches under different conditions. In addition, we present results from a field aligned, two-stream transport electron model of the suprathermal electron flux when the comet is near perihelion.  相似文献   
209.
In paleoclimate studies, cosmogenic isotopes are frequently used as proxy indicators of past variations in solar irradiance on centennial and millennial timescales. These isotopes are spallation products of galactic cosmic rays (GCRs) impacting Earth's atmosphere, which are deposited and stored in terrestrial reservoirs such as ice sheets, ocean sediments and tree trunks. On timescales shorter than the variations in the geomagnetic field, they are modulated by the heliosphere and thus they are, strictly speaking, an index of heliospheric variability rather than one of solar variability. Strong evidence of climate variations associated with the production (as opposed to the deposition) of these isotopes is emerging. This raises a vital question: do cosmic rays have a direct influence on climate or are they a good proxy indicator for another factor that does (such as the total or spectral solar irradiance)? The former possibility raises further questions about the possible growth of air ions generated by cosmic rays into cloud condensation nuclei and/or the modulation of the global thunderstorm electric circuit. The latter possibility requires new understanding about the required relationship between the heliospheric magnetic fields that scatter cosmic rays and the photospheric magnetic fields which modulate solar irradiance.  相似文献   
210.
Future space missions aiming at the accurate measurement of cold plasmas and DC to very low frequency electric fields will require that the potential of their conductive surfaces be actively controlled to be near the ambient plasma potential. In the near-Earth space these spacecraft are usually solar-cell powered; consequently, parts of their surface are most of the time exposed to solar photons. Outside the plasmasphere, a positive surface potential due the dominance of surface-emitted photoelectrons over ambient plasma electrons is to be expected. Photo- and ambient electrons largely determine the potential and positive values between a few Volts up to 100 V have been observed. Active ion emission is the obvious solution of this problem. A liquid metal ion emitter and a saddle field ion emitter are nearing the stage of flight unit fabrication. We will attempt to clamp the spacecraft potential to values close to the plasma potential. We present first results from vacuum chamber tests and describe the emission behaviour and characteristics of emitters producing, respectively, In+ and N2+ beams with an energy of ≥ 5 keV.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号