首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7072篇
  免费   18篇
  国内免费   38篇
航空   3274篇
航天技术   2616篇
综合类   27篇
航天   1211篇
  2021年   65篇
  2019年   45篇
  2018年   140篇
  2017年   92篇
  2016年   82篇
  2014年   158篇
  2013年   193篇
  2012年   183篇
  2011年   279篇
  2010年   187篇
  2009年   302篇
  2008年   360篇
  2007年   196篇
  2006年   170篇
  2005年   206篇
  2004年   206篇
  2003年   237篇
  2002年   144篇
  2001年   220篇
  2000年   149篇
  1999年   169篇
  1998年   197篇
  1997年   146篇
  1996年   185篇
  1995年   241篇
  1994年   216篇
  1993年   124篇
  1992年   182篇
  1991年   70篇
  1990年   67篇
  1989年   154篇
  1988年   60篇
  1987年   57篇
  1986年   73篇
  1985年   226篇
  1984年   173篇
  1983年   140篇
  1982年   173篇
  1981年   202篇
  1980年   62篇
  1979年   50篇
  1978年   59篇
  1977年   54篇
  1976年   46篇
  1975年   42篇
  1974年   52篇
  1973年   31篇
  1972年   34篇
  1970年   40篇
  1969年   39篇
排序方式: 共有7128条查询结果,搜索用时 15 毫秒
681.
The paper elaborates on “ lessons learned” from two recent ESA workshops, one focussing on the role of Innovation in the competitiveness of the space sector and the second on technology and engineering aspects conducive to better, faster and cheaper space programmes. The paper focuses primarily on four major aspects, namely:
1. a) the adaptations of industrial and public organisations to the global market needs;
2. b) the understanding of the bottleneck factors limiting competitiveness;
3. c) the trends toward new system architectures and new engineering and production methods;
4. d) the understanding of the role of new technology in the future applications.

Under the pressure of market forces and the influence of many global and regional players, applications of space systems and technology are becoming more and more competitive. It is well recognised that without major effort for innovation in industrial practices, organisations, R&D, marketing and financial approaches the European space sector will stagnate and loose its competence as well as its competitiveness. It is also recognised that a programme run according to the “better, faster, cheaper” philosophy relies on much closer integration of system design, development and verification, and draws heavily on a robust and comprehensive programme of technology development, which must run in parallel and off-line with respect to flight programmes.

A company's innovation capabilities will determine its future competitive advantage (in time, cost, performance or value) and overall growth potential. Innovation must be a process that can be counted on to provide repetitive, sustainable, long-term performance improvements. As such, it needs not depend on great breakthroughs in technology and concepts (which are accidental and rare). Rather, it could be based on bold evolution through the establishment of know-how, application of best practices, process effectiveness and high standards, performance measurement, and attention to customers and professional marketing. Having a technological lead allows industry to gain a competitive advantage in performance, cost and opportunities. Instrumental to better competitiveness is an R&D effort based on the adaptation of high technology products, capable of capturing new users, increasing production, decreasing the cost and delivery time and integrating high level of intelligence, information and autonomy. New systems will have to take in to account from the start what types of technologies are being developed or are already available in other areas outside space, and design their system accordingly. The future challenge for “faster, better, cheaper” appears to concern primarily “cost-effective”, performant autonomous spacecraft, “cost-effective”, reliable launching means and intelligent data fusion technologies and robust software serving mass- market real time services, distributed via EHF bands and Internet.

In conclusion, it can be noticed that in the past few years new approaches have considerably enlarged the ways in which space missions can be implemented. They are supported by true innovations in mission concepts, system architecture, development and technologies, in particular for the development of initiatives based on multi-mission mini-satellites platforms for communication and Earth observation missions. There are also definite limits to cost cutting (such as lowering heads counts and increasing efficiency), and therefore the strategic perspective must be shifted from the present emphasis on cost-driven enhancement to revenue-driven improvements for growth. And since the product life-cycle is continuously shortening, competitiveness is linked very strongly with the capability to generate new technology products which enhance cost/benefit performance.  相似文献   

682.
We discuss current progress and future plans for the general antiparticle spectrometer experiment (GAPS). GAPS detects antideuterons through the X-rays and pions emitted during the deexcitation of exotic atoms formed when the antideuterons are slowed down and stopped in targets. GAPS provides an exceptionally sensitive means to detect cosmic-ray antideuterons. Cosmic-ray antideuterons can provide indirect evidence for the existence of dark matter in such form as neutralinos or Kaluza–Klein particles. We describe results of accelerator testing of GAPS prototypes, tentative design concepts for a flight GAPS detector, and near-term plans for flying a GAPS prototype on a balloon.  相似文献   
683.
The different types of convective phenomena which may occur during the dendritic solidification of metallic alloys are discussed from an order of magnitude analysis. Bulk thermal convection and/or interdendritic solutal convection have to be considered according to the values of the experimental data. Scaling laws for the solute boundary layer resulting from bulk thermal convection have already been derived. It is shown here that the interdendritic flow depends on a solutal Grashof number Gr based on the horizontal density gradient and a characteristic length Ls which is of the order of the liquid channels width. For Gr < 1, which is generally verified in practical cases, the interdendritic flow velocity Ur is proportional to the Grashof number. This a priori law compares favorably with the results of horizontal solidification experiments where the mean interdendritic flow velocity has been estimated from the resulting measured macrosegregation. In these experiments, as well as for most horizontal dendritic solidifications of metallic alloys at 1 g, the ratio UrR (R is the growth rate) is of order one. In order to cancel the interdendritic flow effects, this ratio has to be lowered by one order of magnitude. According to our analysis, this can be obtained by performing the experiments either at a slightly reduced g level (~10?1 g), or at 1 g in a vertical stable configuration with a sufficiently low residual horizontal thermal gradient.  相似文献   
684.
685.
Global Positioning System (GPS) receiver on the CHAllenging Mini-satellite Payload (CHAMP) and the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) instrument, one of four on board the TIMED satellite, provide middle atmosphere temperature profiles by Radio Occultation (RO) and limb viewing infrared emission measurements, respectively. These temperature profiles retrieved by two different techniques in the stratosphere are compared with each other using more than 1300 correlative profiles in March, September and December 2005. The over-all mean differences averaged over 15 and 35 km are approximately −2 K and standard deviation is less than 3 K. Below 20 km of altitude, relatively small mean temperature differences ∼1 K are observed in wide latitudinal range except for June (during the SABER nighttime observation). In the middle to low latitudes, between 30°S and 30°N, the temperature difference increases with height from ∼0–1 K at 15 km, to ∼−4 K at 35 km of altitude. Large temperature differences about −4 to −6 K are observed between 60°S and 30°N and 31–35 km of altitude for all months and between 0° and 30°N below 16 km during June (nighttime).  相似文献   
686.
Cir X-1 was extremely faint when we observed it with EXOSAT. The light curve clearly shows the source in two states; a faint variable state and a very faint but more constant state. The spectrum is very complicated but clearly shows the existence of an iron line.  相似文献   
687.
Using full-disk observations obtained with the Michelson Doppler Imager (MDI) on board the Solar and Heliospheric Observatory (SOHO) spacecraft, we present variations of the solar acoustic mode frequencies caused by the solar activity cycle. High-degree (100 < ? < 900) solar acoustic modes were analyzed using global helioseismology analysis techniques over most of solar cycle 23. We followed the methodology described in details in [Korzennik, S.G., Rabello-Soares, M.C., Schou, J. On the determination of Michelson Doppler Imager high-degree mode frequencies. ApJ 602, 481–515, 2004] to infer unbiased estimates of high-degree mode parameters ([see also Rabello-Soares, M.C., Korzennik, S.G., Schou, J. High-degree mode frequencies: changes with solar cycle. ESA SP-624, 2006]). We have removed most of the known instrumental and observational effects that affect specifically high-degree modes. We show that the high-degree changes are in good agreement with the medium-degree results, except for years when the instrument was highly defocused. We analyzed and discuss the effect of defocusing on high-degree estimation. Our results for high-degree modes confirm that the frequency shift scaled by the relative mode inertia is a function of frequency and it is independent of degree.  相似文献   
688.
The results of numerical and experimental study of physico-mechanical properties of composite materials are proposed and variations in rigidity characteristics of the hub working part of the hingeless type within the entire range of helicopter operational temperatures are evaluated.  相似文献   
689.
690.
Machine analysis of aerial reconnaissance data is desirable. New acquisition techniques, equipment, and sensors, plus a growing demand for rapidly obtained, accurate information necessitate machine performance of tasks presently accomplished by observers and interpreters. Many of these tasks can be described as pattern recognition or information processing functions. This paper discusses significant problems encountered when attempting to identify objects or regions automatically from aerial photography. Problems include sensor distortions, variations in target environment, and concepts of design and ?teaching? of an actual device. Operational requirements such as processing speed and flexibility restrict the types of solutions available. Approaches to target recognition with relative merits and shortcomings are presented; these include shape correlation, feature extraction, and image quantization. The effect of mission requirements on system parameters is discussed. A bibliography is included.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号