首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7072篇
  免费   18篇
  国内免费   38篇
航空   3274篇
航天技术   2616篇
综合类   27篇
航天   1211篇
  2021年   65篇
  2019年   45篇
  2018年   140篇
  2017年   92篇
  2016年   82篇
  2014年   158篇
  2013年   193篇
  2012年   183篇
  2011年   279篇
  2010年   187篇
  2009年   302篇
  2008年   360篇
  2007年   196篇
  2006年   170篇
  2005年   206篇
  2004年   206篇
  2003年   237篇
  2002年   144篇
  2001年   220篇
  2000年   149篇
  1999年   169篇
  1998年   197篇
  1997年   146篇
  1996年   185篇
  1995年   241篇
  1994年   216篇
  1993年   124篇
  1992年   182篇
  1991年   70篇
  1990年   67篇
  1989年   154篇
  1988年   60篇
  1987年   57篇
  1986年   73篇
  1985年   226篇
  1984年   173篇
  1983年   140篇
  1982年   173篇
  1981年   202篇
  1980年   62篇
  1979年   50篇
  1978年   59篇
  1977年   54篇
  1976年   46篇
  1975年   42篇
  1974年   52篇
  1973年   31篇
  1972年   34篇
  1970年   40篇
  1969年   39篇
排序方式: 共有7128条查询结果,搜索用时 15 毫秒
151.
We have modeled “gradual” solar energetic particle events through numerical simulations using a StochasticDifferential Equation (SDE) method. We consider that energetic particle events are roughly divided into two groups: (1) where the shock was driven by coronal mass ejections (CMEs) associated with large solar flares, and (2) where they have no related solar events apart from the CMEs. (The detailed classification of energetic particle events was discussed in our previous paper.) What we call “gradual” solar energetic particle events belong to the former group. Particles with energies greater than 10 MeV are observed within several hours after the occurrence of flares and CMEs in many gradual events. By applying the SDE method coupled with particle splitting to diffusive acceleration, we found that an injection of high energy particles is necessary for early enhancement of such a high-energy proton flux and that it should not be presumed that the solar wind particles act as the seed population.  相似文献   
152.
This paper presents the scientific objectives of the Solar Physics and Interferometry Mission (SPI), describes succinctly the model payload and summarizes mission's issues. Novel instrumentation (interferometry) and clever mission design (small platform on low orbit with high telemetry and dedicated smaller platform on hexapod for permanently Sun-centered instruments) allow both spectral imaging and Helioseismology at very high spatial and temporal resolutions. Although not retained by ESA, this mission could become reality through NASA MIDEX and/or CNES PROTEUS opportunities as soon as 2007–2008.  相似文献   
153.
From an investigation of the activity of six glucocorticoid dependent liver enzymes, the existence of chronic, transient, stress-induced hypercorticosteronaemia during flight is probable. This hypercorticosteronaemia arises from weightlessness and induces gluconeogenesis. Weightlessness also caused substantial increases in liver glycogen level. The increased lipolytic activity and that of lipoprotein lipase in several groups of animals could be interpreted as enhancement of fat mobilization and utilization under the influence of stress. As this latter enhancement was also found in ground-based controls, it may have been due to the stress of handling rather than to space flight per se.  相似文献   
154.
A wide variety of organisms (the so-called "anhydrobiotes') is able to survive long periods of time in a state of utmost dehydration and can thus survive in extremely dry environments including artificially imposed or space vacuum. Known strategies of survival include the accumulation of certain polyols, especially disaccharides, which help prevent damage to membranes and proteins. Here we report that DNA in vacuum-dried spores is damaged to a very substantial degree by processes leading to DNA strand breaks. Most of these lesions are obviously repaired during germination, but extensive damage to DNA and enzymes after long exposure times (months to years) finally diminish the chances of survival.  相似文献   
155.
Constructed in 1986, the Biosphere 2 Test Module has been used since the end of that year for closed ecological systems experiments. It is the largest closed ecological facility ever built, with a sealed variable volume of some 480 cubic meters. It is built with a skin of steel spaceframes with double-laminated glass panels admitting about 65 percent Photosynthetically Active Radiation (PAR). The floor is of welded steel and there is an underground atmospheric connection via an air duct to a variable volume chamber ("lung") permitting expansion and contraction of the Test Module's air volume caused by changes in temperature and barometric pressure, which causes a slight positive pressure from inside the closed system to the outside thereby insuring that the very small leakage rate is outward. Several series of closed ecological system investigations have been carried out in this facility. One series of experiments investigated the dynamics of higher plants and associated soils with the atmosphere under varying light and temperature conditions. Another series of experiments included one human in the closed system for three, five and twenty-one days. During these experiments the Test Module had subsystems which completely recycled its water and atmosphere; all the human dietary needs were produced within the facility, and all wastes were recycled using a marsh plant/microbe system. Other experiments have examined the capability of individual component systems used, such as the soil bed reactors, to eliminate experimentally introduced trace gases. Analytic systems developed for these experiments include continuous monitors of eleven atmospheric gases in addition to the complete gas chromatography mass spectrometry (GCMS) examinations of potable, waste system and irrigation water quality.  相似文献   
156.
An analysis of the experimental data available and of the present theoretical concepts shows that even the initial physicochemical chemical precellular stages of biological evolution are impossible in the interstellar medium, while biomonomers possibly formed on asteroids and comets might have participated after transportation to the Earth in the final stages of the origin of the first precellular biological structures and then in the first living cells.  相似文献   
157.
158.
The use of charge-coupled devices is suggested as a means for detecting growth of micro-organism colonies. The accuracy of the method is determined by channel width and the sensitivity by the signal/noise ratio. The method was tested on a dense nutrient medium, which is to be considered more suitable to micro-organisms of the dry Martian soil than the water solution of nutrients employed in the Viking's strategy.  相似文献   
159.
An optical design study for a next generation infrared space telescope has been performed. The concept is that of a passively cooled telescope of minium aperture 2.5 metre with an F/1.2 primary and wavelength coverage from = 2 to at least 40 m, and possibly to 100 m. Compactness, low thermal emission from the optics and structure, diffraction limited imaging at = 2 m, and sensitivity to misalignment aberrations and manufacturing errors were the main considerations for this study. Ray tracing results are presented showing the characteristics of the various designs considered. A preliminary investigation of stray light properties is also given. Special emphasis has been placed on the testing of such a fast primary, and optical systems using a lateral shearing interferometer are described for testing both the primary and the primary/secondary combination.  相似文献   
160.
The Photopolarimeter/Radiometer (PPR) is a remote sensing instrument on the Galileo Orbiter designed to measure the degree of linear polarization and the intensity of reflected sunlight in ten spectral channels between 410 and 945 nm to determine the physical properties of Jovian clouds and aerosols, and to characterize the texture and microstructure of satellite surfaces. The PPR also measures thermal radiation in five spectral bands between 15 and 100 m to sense the upper tropospheric temperature structure. Two additional channels which measure spectrally integrated solar and solar plus thermal radiation are used to determine the planetary radiation budget components. The PPR photopolarimetric measurements utilize previously flown technology for high-precision polarimetry using a calcite Wollaston prism and two silicon photodiodes to enable simultaneous detection of the two orthogonal polarization components. The PPR radiometry measurements are made with a lithium tantalate pyroelectric detector utilizing a unique arrangement of radiometric stops and a scene/space chopper blade to enable a warm instrument to sense accurately the much colder scene temperatures.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号