首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6074篇
  免费   93篇
  国内免费   112篇
航空   2873篇
航天技术   2247篇
综合类   41篇
航天   1118篇
  2022年   41篇
  2021年   83篇
  2019年   56篇
  2018年   139篇
  2017年   104篇
  2016年   85篇
  2015年   47篇
  2014年   144篇
  2013年   181篇
  2012年   177篇
  2011年   244篇
  2010年   177篇
  2009年   288篇
  2008年   334篇
  2007年   184篇
  2006年   166篇
  2005年   191篇
  2004年   196篇
  2003年   212篇
  2002年   136篇
  2001年   189篇
  2000年   138篇
  1999年   154篇
  1998年   180篇
  1997年   134篇
  1996年   161篇
  1995年   200篇
  1994年   181篇
  1993年   100篇
  1992年   148篇
  1991年   53篇
  1990年   57篇
  1989年   130篇
  1988年   44篇
  1987年   42篇
  1986年   58篇
  1985年   173篇
  1984年   133篇
  1983年   106篇
  1982年   132篇
  1981年   156篇
  1980年   45篇
  1979年   31篇
  1978年   37篇
  1977年   36篇
  1976年   29篇
  1975年   26篇
  1974年   34篇
  1970年   28篇
  1969年   25篇
排序方式: 共有6279条查询结果,搜索用时 15 毫秒
721.
This paper considers the effect of the rocket exhaust turbulence and scattering within the surrounding medium upon the propagation characteristics of incident electromagnetic waves. The exhaust is represented by a cylindrical plasma beam, diffusing through the surrounding medium. The equations of propagation of EM waves are derived for both TE and TM modes. By using a quasi-linear perturbation technique the exhaust is further separated into an inner homogeneous cylindrical plasma beam, and an outer conical inhomogeneous turbulent region. The isotropic change in the temperature of the outer region and its effects on the fluctuations in the density of electrons, collision frequency, and plasma index of refraction are analyzed in detail. It is found that the exhaust turbulence and scattering effects produce linear fluctuations in the E and H fields computed from the exhaust inner region effect. The equations of this paper can be used in the prediction of the radar cross sections and the attenuation of microwaves by rocket exhaust plumes.  相似文献   
722.
The use of adaptive linear techniques to solve signal processing problems is needed particularly when the interference environment external to the signal processor (such as for a radar or communication system) is not known a priori. Due to this lack of knowledge of an external environment, adaptive techniques require a certain amount of data to cancel the external interference. The number of statistically independent samples per input sensor required so that the performance of the adaptive processor is close (nominally within 3 dB) to the optimum is called the convergence measure of effectiveness (MOE) of the processor. The minimization of the convergence MOE is important since in many environments the external interference changes rapidly with time. Although there are heuristic techniques in the literature that provide fast convergence for particular problems, there is currently not a general solution for arbitrary interference that is derived via classical theory. A maximum likelihood (ML) solution (under the assumption that the input interference is Gaussian) is derived here for a structured covariance matrix that has the form of the identity matrix plus an unknown positive semi-definite Hermitian (PSDH) matrix. This covariance matrix form is often valid in realistic interference scenarios for radar and communication systems. Using this ML estimate, simulation results are given that show that the convergence is much faster than the often-used sample matrix inversion method. In addition, the ML solution for a structured covariance matrix that has the aforementioned form where the scale factor on the identity matrix is arbitrarily lower-bounded, is derived. Finally, an efficient implementation is presented.  相似文献   
723.
We measured changes in length on the two opposite sides of the red-light-grown oat (Avena sativa L.) coleoptiles subjected to either gravitropic or phototropic stimulation and subsequently rotated on a horizontal clinostat. The length measurement was conducted using three 5 mm-long zones delimited by ink markers from the tip. Curvature of each zone was analyzed from the length difference between the two sides. Gravitropism was induced by displacing the seedling from the vertical by 30 degrees or 90 degrees for 25 min. Phototropism was induced by exposing the coleoptile to unilateral blue light for 30 s, which provided a fluence (1.0 micromoles m-2) optimal for the pulse-induced positive phototropism or a lower, suboptimal fluence (0.03 micromoles m-2). After negatively gravitropic bending, the upper two zones straightened rapidly at either displacement angle. After positively phototropic bending, straightening occurred, but only in the top zone and at the lower fluence. The upper two zones straightened rapidly, however, when bilateral blue light (30 s; 15 micromoles m-2 from either direction) was applied 25 min after unilateral stimulation at the higher fluence. Bilateral blue light alone induced no curvature. These results confirm that the straightening of gravitropically bent coleoptiles is autonomic, and suggest that a similar autonomic response participates in the straightening of phototropically bent coleoptiles. Suppression of elongation on the concave side of the coleoptile mainly accounted for gravitropic and phototropic curvatures. The concave side of the top zone shrank during both tropisms. This shrinkage progressed at a high rate from the beginning of curvature response, suggesting that a drop in turgor pressure is the main and direct cause of the shrinkage.  相似文献   
724.
In this paper we discuss the effect of microgravity on T cells and we present the data of studies with two new machines for 0 g simulations. Several experiments in space show that mitogenic T cell activation is lost at 0 g. Immunocytochemistry indicates that such effect is associated with changes of the cytoskeleton. Biochemical studies suggest that the lack of expression of the interleukin-2 receptor is one of the major causes of the loss of activity. In fact, interleukin-2 is the third signal required for full activation. In order to deepen our investigations we are now working with the free-fall machine, FFM, invented by D. Mesland, and with the random positioning machine, RPM, or three-dimensional clinostat, developed by T. Hoson. The FFM produces periods of free-fall lasting approximately 800 ms followed by bounces of 15-30 g lasting 45-60 ms. The RPM eliminates the effect of gravity by rotating biological specimen randomly around two orthogonal axes. While the FFM failed to reproduce the results obtained with T lymphocytes in space, the data from the RPM are in good agreement with those in real microgravity. In fact, the inhibition of the mitotic index in the RPM is 89% compared to static controls. The RPM (as the FFM) can carry markedly larger specimen than the fast rotating clinostat and thus allows to conduct comprehensive studies to select suitable biological objects for further investigations in space.  相似文献   
725.
Sensor alignment with Earth-centered Earth-fixed (ECEF) coordinatesystem   总被引:2,自引:0,他引:2  
In this work, we formulate the multiple sensor alignment problem in an Earth-centered Earth-fixed (ECEF) coordinate system. The alignment algorithm maps the sensor measurements to the ECEF coordinates using a geodetic transformation, and attributes the discrepancies in the Earth-referenced system reported by each sensor to the sensor biases. Sensor biases are then estimated using the least squares (LS) technique. Simulated and real-life radar data are used to evaluate the performance of the proposed algorithm. Comparisons are made to those algorithms based on the standard stereographic projection  相似文献   
726.
727.
We investigate the behavior of mean values of the solar wind’s and interplanetary magnetic field’s (IMF) parameters and their absolute and relative variations during the magnetic storms generated by various types of the solar wind. In this paper, which is a continuation of paper [1], we, on the basis of the OMNI data archive for the period of 1976–2000, have analyzed 798 geomagnetic storms with D st ≤ −50 nT and their interplanetary sources: corotating interaction regions CIR, compression regions Sheath before the interplanetary CMEs; magnetic clouds MC; “Pistons” Ejecta, and an uncertain type of a source. For the analysis the double superposed epoch analysis method was used, in which the instants of the magnetic storm onset and the minimum of the D st index were taken as reference times. It is shown that the set of interplanetary sources of magnetic storms can be sub-divided into two basic groups according to their slowly and fast varying characteristics: (1) ICME (MC and Ejecta) and (2) CIR and Sheath. The mean values, the absolute and relative variations in MC and Ejecta for all parameters appeared to be either mean or lower than the mean value (the mean values of the electric field E y and of the B z component of IMF are higher in absolute value), while in CIR and Sheath they are higher than the mean value. High values of the relative density variation sN/〈N〉 are observed in MC. At the same time, the high values for relative variations of the velocity, B z component, and IMF magnitude are observed in Sheath and CIR. No noticeable distinctions in the relationships between considered parameters for moderate and strong magnetic storms were observed.  相似文献   
728.
SSM (Solar Sail Materials) is an on-going project for the European Space Agency (ESA) relying on past and recent European solar sail design projects. It aims at developing and testing future technologies suitable for large, operational solar sailcrafts.  相似文献   
729.
During the past 10 years, the main part of CELSS studies has concerned the exploration of limits of plant productivity. Very high yields were obtained in continuous and high lighting, without reaching any limit. Concepts of mineral nutrition were renewed. CELSS activities now induce a development in the techniques of image processing applied to plants in order to follow the growth, to detect stresses or diseases or to pilot harvesting robots. Notable efforts concern the development of sensors, the study of trace contaminants and the micro-organisms monitoring. In parallel, several instruments for plant culture in closed Systems were developed. The advantages of closure are emphasised in comparison with open flow systems. The concept of Artificial Ecosystems developed for space research is more and more taken into account by the scientific community. It is considered as a new tool to study basic and applied problems related to ecology and not especially concerned with space research.  相似文献   
730.
The RF SRC—Institute of Biomedical Problems, Russian Academy of Sciences, developed Biorisk hardware to study the effects of long-term exposure of dormant forms of various organisms to outer space and used it to complete a series of experiments on the Russian Module (RM) of the International Space Station (ISS).The experiments were performed using prokaryotes (Bacillus bacteria) and eukaryotes (Penicillium, Aspergillus, and Cladosporium fungi), as well as spores, dormant forms of higher plants, insects, lower crustaceans, and vertebrates. The biological samples were housed in two containers that were exposed to outer space for 13 or 18 months. The results of the 18-month experiment showed that, in spite of harsher temperature than in the first study, most specimens remained viable.These experiments provided evidence that not only bacterial and fungal spores but also dormant forms of organisms that reached higher levels of evolutionary development had the capability to survive a long-term exposure to outer space. This observation suggests that they can be transferred on outer walls of space platforms during interplanetary missions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号