首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5697篇
  免费   9篇
  国内免费   29篇
航空   2574篇
航天技术   2167篇
综合类   19篇
航天   975篇
  2021年   54篇
  2019年   40篇
  2018年   119篇
  2017年   81篇
  2016年   71篇
  2015年   25篇
  2014年   126篇
  2013年   163篇
  2012年   155篇
  2011年   228篇
  2010年   147篇
  2009年   258篇
  2008年   314篇
  2007年   168篇
  2006年   145篇
  2005年   174篇
  2004年   177篇
  2003年   198篇
  2002年   123篇
  2001年   183篇
  2000年   128篇
  1999年   139篇
  1998年   158篇
  1997年   125篇
  1996年   153篇
  1995年   197篇
  1994年   178篇
  1993年   93篇
  1992年   144篇
  1991年   49篇
  1990年   51篇
  1989年   128篇
  1988年   40篇
  1987年   40篇
  1986年   58篇
  1985年   172篇
  1984年   131篇
  1983年   105篇
  1982年   131篇
  1981年   154篇
  1980年   45篇
  1979年   30篇
  1978年   37篇
  1977年   36篇
  1976年   29篇
  1975年   26篇
  1974年   34篇
  1973年   25篇
  1970年   27篇
  1969年   24篇
排序方式: 共有5735条查询结果,搜索用时 15 毫秒
961.
962.
The five main types of antisunward propagating energetic fluxes (particles and emission) may be thought of as well established to date, the effects of which lead to a particilar character of disturbance in the near-terrestrial environment (the Earth's magnetosphere, ionosphere and atmosphere). The strongest global restructuring of the magnetosphere and ionosphere is caused by fluxes of relatively dense n of 1-70 cm-3 at the Earth's orbit) Solar Wind (SW) quasi-neutral, low-energy (E < 10 keV) plasma which cause magnetospheric and ionospheric storms lasting 24 hours or longer. For that reason, main attention is given to their study at the initial stage of research. The physical essence of the method of predicting disturbances in the near-terrestrial space environment, the amplitude of which can be expressed in, for example, the Kp index units, involves:(1) identifying all the most geo-effective SW streams of type, (2) determing their sources on the solar disk,and (3) quantifying the correlations between the characteristics of their solar sources with a maximum value of the Kp-index that is caused by the concerned type of SW stream. Semi-phenomenological relations have been obtained, which relate parameters of type SW stream sources to characteristics of geomagnetic storms:storm commencement, the time at which the storm intensity reaches its maximum values, the storm duration,as well as to the storm amplitude expressed in terms of geomagnetic indeces.   相似文献   
963.
The resulting L-distributions and energy spectra of energetic magnetospheric electrons obtained from numerical solution of the radiation belt transport equation with and without accounting for electron synchrotron energy losses are compared. It is demonstrated that synchrotron losses play an important role in formation of the space and energetic distributions of electrons in the inner magnetosphere.  相似文献   
964.
An artificial neural network (ANN) based helicopter identification system is proposed. The feature vectors are based on both the tonal and the broadband spectrum of the helicopter signal, ANN pattern classifiers are trained using various parametric spectral representation techniques. Specifically, linear prediction, reflection coefficients, cepstrum, and line spectral frequencies (LSF) are compared in terms of recognition accuracy and robustness against additive noise. Finally, an 8-helicopter ANN classifier is evaluated. It is also shown that the classifier performance is dramatically improved if it is trained using both clean data and data corrupted with additive noise.  相似文献   
965.
Green  J.L.  Benson  R.F.  Fung  S.F.  Taylor  W.W.L.  Boardsen  S.A.  Reinisch  B.W.  Haines  D.M.  Bibl  K.  Cheney  G.  Galkin  I.A.  Huang  X.  Myers  S.H.  Sales  G.S.  Bougeret  J.-L.  Manning  R.  Meyer-Vernet  N.  Moncuquet  M.  Carpenter  D.L.  Gallagher  D.L.  Reiff  P.H. 《Space Science Reviews》2000,91(1-2):361-389
The Radio Plasma Imager (RPI) will be the first-of-its kind instrument designed to use radio wave sounding techniques to perform repetitive remote sensing measurements of electron number density (N e) structures and the dynamics of the magnetosphere and plasmasphere. RPI will fly on the Imager for Magnetopause-to-Aurora Global Exploration (IMAGE) mission to be launched early in the year 2000. The design of the RPI is based on recent advances in radio transmitter and receiver design and modern digital processing techniques perfected for ground-based ionospheric sounding over the last two decades. Free-space electromagnetic waves transmitted by the RPI located in the low-density magnetospheric cavity will be reflected at distant plasma cutoffs. The location and characteristics of the plasma at those remote reflection points can then be derived from measurements of the echo amplitude, phase, delay time, frequency, polarization, Doppler shift, and echo direction. The 500 m tip-to-tip X and Y (spin plane) antennas and 20 m Z axis antenna on RPI will be used to measures echoes coming from distances of several R E. RPI will operate at frequencies between 3 kHz to 3 MHz and will provide quantitative N e values from 10–1 to 105 cm–3. Ray tracing calculations, combined with specific radio imager instrument characteristics, enables simulations of RPI measurements. These simulations have been performed throughout an IMAGE orbit and under different model magnetospheric conditions. They dramatically show that radio sounding can be used quite successfully to measure a wealth of magnetospheric phenomena such as magnetopause boundary motions and plasmapause dynamics. The radio imaging technique will provide a truly exciting opportunity to study global magnetospheric dynamics in a way that was never before possible.  相似文献   
966.
The Radio Plasma Imager investigation on the IMAGE spacecraft   总被引:1,自引:0,他引:1  
Reinisch  B.W.  Haines  D.M.  Bibl  K.  Cheney  G.  Galkin  I.A.  Huang  X.  Myers  S.H.  Sales  G.S.  Benson  R.F.  Fung  S.F.  Green  J.L.  Boardsen  S.  Taylor  W.W.L.  Bougeret  J.-L.  Manning  R.  Meyer-Vernet  N.  Moncuquet  M.  Carpenter  D.L.  Gallagher  D.L.  Reiff  P. 《Space Science Reviews》2000,91(1-2):319-359
Radio plasma imaging uses total reflection of electromagnetic waves from plasmas whose plasma frequencies equal the radio sounding frequency and whose electron density gradients are parallel to the wave normals. The Radio Plasma Imager (RPI) has two orthogonal 500-m long dipole antennas in the spin plane for near omni-directional transmission. The third antenna is a 20-m dipole along the spin axis. Echoes from the magnetopause, plasmasphere and cusp will be received with the three orthogonal antennas, allowing the determination of their angle-of-arrival. Thus it will be possible to create image fragments of the reflecting density structures. The instrument can execute a large variety of programmable measuring options at frequencies between 3 kHz and 3 MHz. Tuning of the transmit antennas provides optimum power transfer from the 10 W transmitter to the antennas. The instrument can operate in three active sounding modes: (1) remote sounding to probe magnetospheric boundaries, (2) local (relaxation) sounding to probe the local plasma frequency and scalar magnetic field, and (3) whistler stimulation sounding. In addition, there is a passive mode to record natural emissions, and to determine the local electron density, the scalar magnetic field, and temperature by using a thermal noise spectroscopy technique.  相似文献   
967.
In the paper, the problem of designing interplanetary trajectories with several swing-bys and deep-space maneuvers is solved using the method of virtual trajectories developed by the authors. The algorithms for the calculation of both heliocentric and planetocentric trajectory arcs are presented, including the case of resonant trajectories. The results of applying the method of virtual trajectories to the problem of designing an interplanetary transfer to Jupiter are given and compared with the baseline trajectories for the Juno, Europa Clipper, and Laplace missions.  相似文献   
968.
969.
In 2013 and 2015, investigations of the internal solar wind were carried out using the method of two-frequency radio sounding by signals from the Mars Express European spacecraft. The values of the S- and X-bands’ frequency and the differential frequency were registered with a sampling rate of 1s at the American and European networks of ground-based tracking stations. The spatial distribution of the frequency fluctuation’s level has been studied. It has been shown that the intensity of frequency fluctuation considerably decreases at high heliolatitudes. In some radio sounding sessions, quasiperiodic oscillations of sub-mHz band have been observed in the temporal spectra of frequency fluctuations; they are supposed to be associated with the density inhomogeneities, the sizes of which are close to the turbulence outer scale.  相似文献   
970.
We have reconstructed the uncontrolled rotational motion of the Progress M-29M transport cargo spacecraft in the single-axis solar orientation mode (the so-called sunward spin) and in the mode of the gravitational orientation of a rotating satellite. The modes were implemented on April 3–7, 2016 as a part of preparation for experiments with the DAKON convection sensor onboard the Progress spacecraft. The reconstruction was performed by integral statistical techniques using the measurements of the spacecraft’s angular velocity and electric current from its solar arrays. The measurement data obtained in a certain time interval have been jointly processed using the least-squares method by integrating the equations of the spacecraft’s motion relative to the center of mass. As a result of processing, the initial conditions of motion and parameters of the mathematical model have been estimated. The motion in the sunward spin mode is the rotation of the spacecraft with an angular velocity of 2.2 deg/s about the normal to the plane of solar arrays; the normal is oriented toward the Sun or forms a small angle with this direction. The duration of the mode is several orbit passes. The reconstruction has been performed over time intervals of up to 1 h. As a result, the actual rotational motion of the spacecraft relative to the Earth–Sun direction was obtained. In the gravitational orientation mode, the spacecraft was rotated about its longitudinal axis with an angular velocity of 0.1–0.2 deg/s; the longitudinal axis executed small oscillated relative to the local vertical. The reconstruction of motion relative to the orbital coordinate system was performed in time intervals of up to 7 h using only the angularvelocity measurements. The measurements of the electric current from solar arrays were used for verification.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号