首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   30篇
  免费   0篇
航空   3篇
航天技术   25篇
航天   2篇
  2019年   1篇
  2018年   1篇
  2014年   18篇
  2009年   1篇
  2008年   2篇
  2004年   1篇
  1999年   1篇
  1984年   1篇
  1981年   2篇
  1980年   1篇
  1972年   1篇
排序方式: 共有30条查询结果,搜索用时 15 毫秒
21.
Corotating Interaction Regions (CIRs) form as a consequence of the compression of the solar wind at the interface between fast speed streams and slow streams. Dynamic interaction of solar wind streams is a general feature of the heliospheric medium; when the sources of the solar wind streams are relatively stable, the interaction regions form a pattern which corotates with the Sun. The regions of origin of the high speed solar wind streams have been clearly identified as the coronal holes with their open magnetic field structures. The origin of the slow speed solar wind is less clear; slow streams may well originate from a range of coronal configurations adjacent to, or above magnetically closed structures. This article addresses the coronal origin of the stable pattern of solar wind streams which leads to the formation of CIRs. In particular, coronal models based on photospheric measurements are reviewed; we also examine the observations of kinematic and compositional solar wind features at 1 AU, their appearance in the stream interfaces (SIs) of CIRs, and their relationship to the structure of the solar surface and the inner corona; finally we summarise the Helios observations in the inner heliosphere of CIRs and their precursors to give a link between the optical observations on their solar origin and the in-situ plasma observations at 1 AU after their formation. The most important question that remains to be answered concerning the solar origin of CIRs is related to the origin and morphology of the slow solar wind. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
22.
It is becoming clear that we can define two different types of nearby AGN belonging to the Seyfert 1 class (S1), on the basis of the match of the intensities of their Broad Balmer Lines (BBL) with the Boltzmann Plots (BP). These two types of S1 galaxies, that we call BP-S1 and NoBP-S1, are characterized, in first approximation, by Broad Line Regions (BLR) with different structural and physical properties. In this communication, we show that these features can be well pointed out by a multi-wavelength analysis of the continuum and of the broad recombination Hydrogen lines, that we carry out on a sample of objects detected at optical and X-ray frequencies. The investigation is addressed to verify whether BP-S1 are the ideal candidates for the study of the kinematical and structural properties of the BLR, in order to derive reliable estimates of the mass of their central engine and to constrain the properties of their nuclear continuum spectrum.  相似文献   
23.
We used the Z-transformed Discrete Correlation Function (ZDCF) and the Stochastic Process Estimation for AGN Reverberation (SPEAR) methods for the time series analysis of the continuum and the Hαα and Hββ line fluxes of a sample of well known type 1 active galactic nuclei (AGNs): Arp 102B, 3C 390.3, NGC 5548, and NGC 4051, where the first two objects are showing double-peaked emission line profiles. The aim of this work is to compare the time lag measurements from these two methods, and check if there is a connection with other emission line properties. We found that the obtained time lags from Hβ are larger than those derived from the Hα analysis for Arp 102B, 3C 390.3 and NGC 5548. This may indicate that the Hβ   line originates at larger radii in these objects. Moreover, we found that the ZDCF and SPEAR time lags are highly correlated (r∼0.87r0.87), and that the error ranges of both ZDCF and SPEAR time lags are correlated with the FWHM of used emission lines (r∼0.7r0.7). This increases the uncertainty of the black hole mass estimates using the virial theorem for AGNs with broader lines.  相似文献   
24.
25.
We investigated the efficiency of estimating characteristics of stellar populations (SP) and Active Galactic Nuclei (AGN) emission using ULySS code. To analyze simultaneously AGN and SP components in the integrated spectrum of Type 2 active galaxies, we modeled the featureless continuum (FC) and emission lines, and we used PEGASE.HR stellar population models provided by ULySS. In order to validate the method, we simulated over 7000 integrated spectra of Seyfert 2 galaxies. Spectra were generated using different characteristics of the featureless AGN continuum, signal-to-noise ratio (SNR), spectral ranges, properties of emission lines and single stellar population (SSP) model whose initial mass function (IMF) and abundance pattern is similar to the solar neighborhood. Simulated spectra were fitted with ULySS to evaluate the ability of the method to extract SP and AGN properties. We found that the analysis with ULySS can efficiently restore the characteristics of SP in spectra of Seyfert 2 AGNs, where signal-to-noise ratio is higher than 20, and where SP contributes with more than 10% to the total flux. Degeneracies between AGN and SP parameters increase with increasing the AGN continuum fraction, which points out the importance of simultaneous fitting of the FC and SP contributions.  相似文献   
26.
The Mathematical Statistics Theory (MST) and the Mathematical Theory of Stochastic Processes (MTSP) are different branches of the more general Mathematical Probability Theory (MPT) that can be used to investigate physical processes through mathematics. Each model of a stochastic process, according to MTSP, can provide one or more interpretations in the MST domain. A large body of work on impact crater statistics according to MST exists, showing cumulative crater frequency (N km−2) as a function of age (years) for some particular crater diameter. However, this is only one possible representation in the MST domain of the bombardment of the planetary surface modeled as a stochastic process according to MTSP. The idea that other representations are possible in the MST domain of the same stochastic process from MTSP has been recently presented. The importance of the approach is that each such mathematical-based interpretation can provide a large amount of new information. Coupled with MOLA data, Topography-Profile Diagrams (TPD) are one of the many examples that can provide a large amount of new information regarding the history of Mars. TPD consists of: (1) Topography-Profile Curve (TPC), which is a representation of the planet’s topography, (2) Density-of-Craters Curve (DCC), which represents density of craters, (3) Filtered-DCC (FDCC), which represents DCC filtered by a low-pass filter, included with the purpose of reducing the noise, and (4) Level-of-Substance-Over-Time Curve (LSOTC), which represents interpretation of the influence on the distribution of craters shown by FDCC. TPC uniquely corresponds to the computation of TPD, whereas DCC depends on algorithms for computing the elevation of each crater according to the topography, center coordinates, and radius of impact crater, and FDCC relies on the architecture of the custom designed low-pass filter for filtering DCC. However, all variations of DCC and FDCC, which includes the various impact crater data sets, showed a correlation among the density of craters and elevation over 70–80% of the planet surface. Additionally, if we assume that the ocean primarily caused the noted correlation, LSOTC offers a mathematical approach for estimating topographic change of the ocean’s extent over time. Accordingly, TPD is the first new practical application of MTSP to lunar and planetary sciences, showing correlation of topography to a physical process.  相似文献   
27.
28.
Here we present a new method for subtracting the Balmer pseudocontinuum in the UV part of type 1 AGN spectra. We calculate the intensity of the Balmer pseudocontinuum using the prominent Balmer lines in AGN spectra. We apply the model on a sample of 293 type 1 AGNs from SDSS database, and found that our model of Balmer pseudocontinuum + power law continuum very well fits the majority of AGN spectra from the sample, while in ∼15% of AGNs, the model fits reasonable the UV continuum, but a discrepancy between the observed and fitted spectra is noted. Some of the possible reasons for the discrepancy may be a different value for the optical depth in these spectra than used in our model or the influence of the intrinsic reddening.  相似文献   
29.
Impact craters are ubiquitous and well-studied structures of high geological relevance on the surfaces of the Earth’s Moon, the terrestrial planets, the asteroids and the satellites of the outer planets. Therefore, it is not surprising that crater detection algorithms (CDAs) are one of the most studied subjects of image processing and analysis in lunar and planetary science. In this paper we are proposing a Hybrid CDA: a modified DEM (digital elevation map) reconstruction method used as a step in an existing CDA based on Hough transform. The new Hybrid CDA consists of: (1) reconstruction of topography from optical images using a shape from shading approach; (2) utilization of the DEM-based CDA; (3) correction of brightness and contrast of optical images used in order to be more suitable for evaluation of detections. An additional result of this work is a new method for evaluation of topography reconstruction algorithms, using a DEM-based CDA and an earlier approach for evaluation of CDAs. The new Hybrid CDA was tested using two Chandrayaan-1 Moon Mineralogy Mapper (M3) images and two excerpts of the Lunar Reconnaissance Orbiter (LRO) Wide Angle Camera (WAC) global optical image mosaic. As a result, the number of craters inside these four regions increased considerably from 1754 (as available in the previous LU60645GT catalogue) to 19 396 craters (as available in the resulting new LU78287GT catalogue). This confirmed the practical applicability of the new Hybrid CDA, which can be used in order to considerably extend current crater catalogues.  相似文献   
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号