首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1364篇
  免费   384篇
  国内免费   225篇
航空   1058篇
航天技术   295篇
综合类   192篇
航天   428篇
  2024年   4篇
  2023年   23篇
  2022年   67篇
  2021年   75篇
  2020年   81篇
  2019年   60篇
  2018年   60篇
  2017年   56篇
  2016年   72篇
  2015年   99篇
  2014年   95篇
  2013年   89篇
  2012年   115篇
  2011年   112篇
  2010年   117篇
  2009年   113篇
  2008年   101篇
  2007年   76篇
  2006年   88篇
  2005年   60篇
  2004年   47篇
  2003年   25篇
  2002年   36篇
  2001年   28篇
  2000年   37篇
  1999年   37篇
  1998年   30篇
  1997年   31篇
  1996年   22篇
  1995年   13篇
  1994年   10篇
  1993年   16篇
  1992年   14篇
  1991年   11篇
  1990年   14篇
  1989年   13篇
  1988年   11篇
  1987年   9篇
  1986年   2篇
  1985年   1篇
  1984年   1篇
  1982年   2篇
排序方式: 共有1973条查询结果,搜索用时 15 毫秒
991.
飞行器气动参数智能在线辨识技术研究   总被引:1,自引:0,他引:1       下载免费PDF全文
气动参数辨识对于大气层内飞行器来说至关重要,通过在线气动参数辨识可规划更准确的飞行轨迹,并对控制参数进行自适应调整。传统辨识方法的模型较为复杂,运算量大,无法满足飞行器在线辨识的要求。而基于神经网络的智能参数辨识方法,不仅可以离线对网络模型进行训练,并利用历史飞行数据进行模型修正,也可在线时直接利用训练好的网络对参数进行快速调整,在保证参数估计精度的同时,保障参数估计的快速性。提出了一种基于支撑向量机(SVM)的样本扩充和神经网络参数在线快速修正方法。通过仿真和统计,证明了基于SVM的神经网络方法对飞行器气动参数进行在线快速智能辨识的可行性。  相似文献   
992.
系统阐述了涨圈密封的基本理论和结构特点,深入探讨了涨圈密封参数化设计的意义和现状。在此基础上,在AutoCAD 2008平台下,采用C++编程语言,在Object ARX2008环境下成功开发了用于涨圈密封设计的参数化CAD软件,实现了涨圈密封的参数化设计,提高了涨圈密封设计的效率和质量,设计实例表明,软件界面友好,使用简单,设计结果可靠,经试验验证,研制的涨圈密封各项指标均满足产品性能需求。  相似文献   
993.
总结了在轨实时信息处理技术的发展现状,分析了光学遥感微纳卫星在轨实时信息处理的迫切需求,进而阐述了光学遥感微纳卫星在轨实时信息处理技术应用限制条件,在此基础上提出了光学遥感微纳卫星在轨实时处理系统设计思路。面向几类典型应用探讨了光学遥感微纳卫星在轨实时信息处理系统设计方案,为光学遥感微纳卫星在轨实时信息处理技术应用提供参考。  相似文献   
994.
随着卫星通信技术的日益成熟,相控阵天线被广泛应用于低轨卫星系统,提出了一种面向低轨卫星通信的新型双圆极化宽带宽角扫描阵列天线。阵列天线单元采用一种金属栅格加载的对称阵子,其工作宽带为17GHz~21GHz,相对带宽超过21%,同时金属栅格加载方法可有效展宽对称阵子波束宽度,从而在工作频段内使E面和H面波束宽度均超过140°。通过上述宽带宽波束对称阵子作为阵列天线单元,形成8×8的64单元阵面。然后,阵列天线单元经过旋转组阵,实现了双圆极化特性。由于天线单元具有宽带、宽波束性能,有效拓展了阵列波束扫描角度,即在不同旋向下,均能实现二维±60°的波束扫描。阵列在低频17GHz工作时,法向波束增益为18.2dB,当扫描离轴角为60°时,增益下降2.8dB,轴比小于2dB。在高频21GHz时,法向增益为19.6dB,当扫描离轴角为60°时,增益下降3.7dB,轴比小于3dB,具备良好的宽带宽角覆盖性能,从而在低轨卫星通信中具有广阔的应用前景。  相似文献   
995.
详细介绍了国家CIMS示范工程某装载机厂的CIMS工程MFCIMS的总体设计。首先分析了系统瓣功能和信息需求,并结合装载机厂的现有状况、经营目标,确定了MFCIMS分系统的划分原则。分析了系统总体设计应遵循的原则,并对总体体系设计进行了详细阐述。给出了系统总体体结构图、纵向层次结构图、信息集成关系图、IDEF0图及IDEF1X信息功能图,这些构成了MFCIMS总体设计的核心。最后对MFCIMS的关  相似文献   
996.
工作于低频波段的星载合成孔径雷达(SAR)信号会受到电离层的显著影响,因此在系统设计时必须考虑相应的补偿方法。基于此,首先开展了适用于低频大宽带SAR模式的电离层影响评估研究,建立了基于勒让德展开的五阶误差分析模型,可有效解决传统模型各阶次耦合问题。其次,针对背景电离层色散问题,开展了基于双频自聚焦算法的补偿研究,利用ALOS PALSAR数据进行了半物理仿真验证,电离层反演精度优于0.4TECU,可有效提升图像聚焦质量;针对法拉第旋转角误差,利用ALOS PALSAR回波散射矩阵信息开展了补偿研究,结果显示,相比官网提供的补偿参数,误差可进一步降低27%。上述基于回波数据本身的补偿研究,可避免第三方数据精度差、分辨率低、需地面接收机、传播路径不一致等问题,同时降低了载荷成本。最后,结合SAR高分辨率特性,基于回波的电离层反演可有效提高现有电离层探测能力,开展了PALSAR-垂测仪联合反演电子密度研究,其结果比仅垂测仪数据精度普遍提高了30%以上。研究成果可为未来低频星载SAR的系统设计提供技术支撑。  相似文献   
997.
金属激光增材制造过程中,热应力导致零件发生形变;气孔与熔合不良等缺陷降低零件的拉伸以及疲劳性能;熔池内的凝固微观组织,尤其是柱状晶等轴晶转变(Columnar to Equiaxed Transition,CET)是影响零件性能的重要因素。针对上述3个方面,回顾了金属激光增材制造数值模拟的发展历史,对其研究现状和存在问题进行了评述,阐述了金属激光增材制造过程中所采用的数值模型和数值方法,包括热应力分析的有限元(Finite Element Method,FEM)方法、模拟熔池金属液流动的计算流体力学方法(Computational Fluid Dynamics,CFD),以及凝固微观组织模拟的相场法(Phase Field,PF)和元胞自动机方法(Cellular Automaton,CA)。在此基础上对金属激光增材制造过程数值模拟的前景及趋势进行了展望。  相似文献   
998.
针对作战编队自主保障期间,作战单元对装备故障仅具备换件修理、保障单元对备件修复概率小于1的保障特点,扩展备件管理多级(METRIC)模型,建立了装备冗余和外场更换件(Line Replaceable Unit,LRU)冗余结构下非串件策略和串件策略两级单层备件库存保障模型。以备件贮存空间为约束,可用度为目标,对非串件策略系统建立有限解空间下的分层边际优化模型。依据备件保障流程,基于蒙特卡罗仿真方法建立了两级维修保障仿真模型。实例分析结果表明:当系统可用度较低,采用串件策略能极大提高系统可用度;仿真结果与解析结果一致,本文建模方法正确。模型可为保障决策者制定编队随行备件方案提供参考。  相似文献   
999.
采用高电压太阳电池阵供电系统的低轨道(LEO)大型航天器会收集周围空间环境电子电流,使其被充电到较高的负电位,从而对航天器交会对接和航天员出舱产生严重的危害,因此对这种航天器表面电位进行主动控制可有效降低航天器运行风险和保障航天员安全。采用地面模拟试验的方法,利用空心阴极等离子体接触器发射电子的手段,模拟太空环境下对带负电航天器表面电位进行有效控制。研究结果表明,最小工质流率大于4.0 sccm时空心阴极发射的电子电流可以抵消航天器吸收的电子电流,实现航天器电位的自适应控制,将航天器表面电位钳制在20 V之内;且随着氙气流率的增加,钳位电压会更小。这一方法将有效避免航天员出舱活动和航天器交会对接时的放电危险,对中国航天器带电效应防护具有很重要的意义。  相似文献   
1000.
超磁致伸缩材料驱动的电静液作动器具有结构高度集成、性能影响因素多以及理论分析复杂等特点,为寻求超磁致伸缩电静液作动器可靠的理论分析方法以提高其输出性能,首先搭建了超磁致伸缩执行器与作动器试验测试平台,完成了执行器与作动器动态特性对比试验,在准确测试与观察试验现象的基础上,对超磁致伸缩电静液作动器进行结构分解,以各环节固有频率为理论分析切入点,采用试验、理论与有限元分析相结合的方法,分析了悬臂梁阀片、管路、液压缸以及蓄能器等动态特性对作动器输出性能的影响规律,总结出符合试验结果的理论分析方法并确定了影响与制约作动器输出性能的关键环节,最后提出了超磁致伸缩电静液作动器优化改进方案,优化后作动器试验结果显示:在200 Hz左右、0.6 MPa 的偏压作用下,选取 0.15 mm 厚度的阀片,作动器的输出性能达到最佳,其输出流量最大可达1.2 L/min。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号