首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2533篇
  免费   7篇
  国内免费   6篇
航空   1189篇
航天技术   919篇
综合类   9篇
航天   429篇
  2021年   18篇
  2019年   16篇
  2018年   59篇
  2017年   36篇
  2016年   39篇
  2015年   12篇
  2014年   55篇
  2013年   89篇
  2012年   56篇
  2011年   86篇
  2010年   71篇
  2009年   118篇
  2008年   141篇
  2007年   58篇
  2006年   63篇
  2005年   65篇
  2004年   64篇
  2003年   85篇
  2002年   43篇
  2001年   92篇
  2000年   48篇
  1999年   65篇
  1998年   69篇
  1997年   66篇
  1996年   64篇
  1995年   88篇
  1994年   86篇
  1993年   41篇
  1992年   50篇
  1991年   15篇
  1990年   24篇
  1989年   51篇
  1988年   32篇
  1987年   20篇
  1986年   29篇
  1985年   74篇
  1984年   70篇
  1983年   42篇
  1982年   69篇
  1981年   67篇
  1980年   17篇
  1979年   10篇
  1978年   31篇
  1977年   12篇
  1975年   24篇
  1974年   16篇
  1973年   16篇
  1972年   16篇
  1970年   9篇
  1969年   12篇
排序方式: 共有2546条查询结果,搜索用时 15 毫秒
931.
The European Space Agency has recently initiated a study of the human responses, limits and needs with regard to the stress environments of interplanetary and planetary missions. Emphasis has been laid on human health and performance care as well as advanced life support developments including bioregenerative life support systems and environmental monitoring. The overall study goals were as follows: (i) to define reference scenarios for a European participation in human exploration and to estimate their influence on the life sciences and life support requirements; (ii) for selected mission scenarios, to critically assess the limiting factors for human health, wellbeing, and performance and to recommend relevant countermeasures; (iii) for selected mission scenarios, to critically assess the potential of advanced life support developments and to propose a European strategy including terrestrial applications; (iv) to critically assess the feasibility of existing facilities and technologies on ground and in space as testbeds in preparation for human exploratory missions and to develop a test plan for ground and space campaigns; (v) to develop a roadmap for a future European strategy towards human exploratory missions, including preparatory activities and terrestrial applications and benefits. This paper covers the part of the HUMEX study dealing with lunar missions. A lunar base at the south pole where long-time sunlight and potential water ice deposits could be assumed was selected as the Moon reference scenario. The impact on human health, performance and well being has been investigated from the view point of the effects of microgravity (during space travel), reduced gravity (on the Moon) and abrupt gravity changes (during launch and landing), of the effects of cosmic radiation including solar particle events, of psychological issues as well as general health care. Countermeasures as well as necessary research using ground-based test beds and/or the International Space Station have been defined. Likewise advanced life support systems with a high degree of autonomy and regenerative capacity and synergy effects were considered where bioregenerative life support systems and biodiagnostic systems become essential. Finally, a European strategy leading to a potential European participation in future human exploratory missions has been recommended.  相似文献   
932.
Using the cultured chicken embryonic chondrocytes as a model, the effects of simulated microgravity on the microtubular system of the cellular skeleton, extracellular matrix, alkaline phosphatase activity, intracellular free calcium concentration and mitochondrial ATP synthase activity with its oligomycin inhibition rate were studied with a clinostat. The microtubular content was measured by a flow cytometer. The decrease of microtubular content showed the impairment of the cellular skeleton system. Observation on the extracellular matrix by the scanning electron microscopy showed that it decreased significantly after rotating, and the fibers in the extracellular matrix were more tiny and disorderly than that of the control group. It can be concluded that the simulated microgravity can affect the secreting and assembly of the extracellular matrix. In contrast to the control, there was a time course decrease in alkaline phosphatase activity of chondrocytes, a marker of matrix mineralization. Meanwhile a significant drop in the intracellular calcium concentration happened at the beginning of rotation. These results indicate that simulated microgravity can suppress matrix calcification of cultured chondrocytes, and intracellular free calcium may be involved in the regulation of matrix calcification as the second signal transmitter. No significant changes happened in the mitochondrial ATP synthase activity and its oligomycin inhibition rate. Perhaps the energy metabolism wasn't affected by the simulated microgravity. The possible mechanisms about them were discussed.  相似文献   
933.
The Long Duration Exposure Facility (LDEF), which encompassed 57 experiments with more than 10,000 test specimens, spent 69 months in low Earth orbit (LEO) before it was retrieved by the Space Shuttle in January 1990. Hundreds of LDEF investigators, after studying for over two years these retrieved test specimens and the onboard recorded data and systems hardware, have generated a unique first-hand view of the long term synergistic effects that the LEO environment can have on spacecraft. These studies have also contributed significantly toward more accurate models of the LEO radiation, meteoroid, manmade debris and atomic oxygen environments. This paper provides an overview of some of the many LDEF observations and the implications these can have on future spacecraft such as Space Station Freedom.  相似文献   
934.
The zinc bromine battery is a high energy density battery that utilizes low cost materials. The battery is of unique construction utilizing plastic storage tanks for the zinc bromide electrolyte and plastic bipolar electrode stacks. This paper briefly describes the zinc bromine battery technology and the experience gained in installing and operating an electric vehicle with this advanced system. The described electric vehicle (The “T-Star”) was tested in March 1993 on the Chrysler Proving Grounds in Phoenix, Arizona and it participated in the May 1993 American Tour de Sol capturing second place over all and first place in the student division  相似文献   
935.
936.
The out-of-ecliptic distribution of interplanetary dust, i.e. its number density, mainly has been subject to optical or infrared remote sensing techniques. As the population in interplanetary space is made up of orbiting particles which will cross the ecliptic plane, determination of their orbital properties there gives a possibility also to derive their out-of-ecliptic distribution. Determination of orbital elements is provided by advanced detectors capable of measuring the vector of impact velocity. In a simple model, which applies for advanced detectors in near earth orbit, the feasibility of the method to determine the out-of-ecliptic spatial distribution of dust has been tested.  相似文献   
937.
The Mobile Radiation Exposure Control System's (Liulin-4 type) main purpose is to monitor simultaneously the doses and fluxes at 4 independent places. It can also be used for personnel dosimetry. The system consists of 4 battery-operated 256-channel dosimeters-spectrometers. We describe results obtained during the calibrations of the spectrometers at the Cyclotron facilities of the University of Louvain, Belgium and of the National Institute of Radiological Sciences-STA, Chiba, Japan with protons of energies up to 70 MeV. The angular sensitivities of the devices are studied and compared with Monte-Carlo predictions. We also present the results obtained at the HIMAC accelerator with 500 MeV/u Fe ions and at the CERN high energy radiation reference fields. Records made during airplane flights are shown and compared with the predictions of the CARI-6 model.  相似文献   
938.
The successful launch of the New Horizons spacecraft for a rendezvous with Pluto and Charon and the continuing progress of the MESSENGER spacecraft toward Mercury now positions mankind to unlock mysteries of our solar system from Mercury to Pluto and beyond. Both missions, though very different in concept, use the same generic timekeeping system design. This paper explores how we maintain time on these spacecraft and how we establish on the ground the correlation between spacecraft time and Earth time. It further reviews the sub-millisecond correlation accuracy that has been demonstrated for the MESSENGER mission and the time accuracy we expect to achieve for that mission at Mercury and for the New Horizons mission at Pluto-Charon  相似文献   
939.
CH4, CO, and CO2 are all potential one-carbon molecular repositories in primitive icy objects. These molecules are all found in the Comet Halley coma, and are probable but, (except for CH4 detected on Triton and Pluto) undetected subsurface constituents in icy outer solar system objects. We have investigated the effects of charged particle irradiation by cold plasma discharge upon surfaces of H2O:CH4 clathrate having a 200:1 ratio, as well as upon ices composed of H2O plus C2H6 or C2H2 (sometimes plus NH3) which are also plausible constituents. These materials color and darken noticeably after a dose 10(9) - 10(10) erg cm-2, which is deposited rapidly (< or = 10(4) yr.) in solar system environments. The chromophore is a yellowish to tan organic material (a tholin) which we have studied by UV-VIS reflection and transmission, and IR transmission spectroscopy. Its yield, -1 C keV-1, implies substantial production of organic solids by the action of cosmic rays and radionuclides in cometary crusts and interiors, as well as rapid production in satellite surfaces. This material shows alkane bands which Chyba and Sagan have shown to well match the Halley infrared emission spectrum near 3.4 microns, and also bands due to aldehyde, alcohol and perhaps alkene/aromatic functional groups. We compare the IR spectral properties of these tholins with the spectra of others produced by irradiation of gases and ices containing simple hydrocarbons.  相似文献   
940.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号