首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18182篇
  免费   87篇
  国内免费   156篇
航空   9987篇
航天技术   5382篇
综合类   305篇
航天   2751篇
  2021年   167篇
  2018年   202篇
  2016年   162篇
  2014年   444篇
  2013年   530篇
  2012年   427篇
  2011年   611篇
  2010年   431篇
  2009年   770篇
  2008年   813篇
  2007年   395篇
  2006年   462篇
  2005年   419篇
  2004年   424篇
  2003年   508篇
  2002年   480篇
  2001年   549篇
  2000年   374篇
  1999年   461篇
  1998年   423篇
  1997年   333篇
  1996年   373篇
  1995年   437篇
  1994年   413篇
  1993年   356篇
  1992年   300篇
  1991年   250篇
  1990年   240篇
  1989年   386篇
  1988年   203篇
  1987年   232篇
  1986年   234篇
  1985年   644篇
  1984年   518篇
  1983年   408篇
  1982年   486篇
  1981年   610篇
  1980年   245篇
  1979年   186篇
  1978年   189篇
  1977年   145篇
  1976年   155篇
  1975年   189篇
  1974年   180篇
  1973年   161篇
  1972年   188篇
  1971年   148篇
  1970年   144篇
  1969年   148篇
  1967年   142篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
841.
Problems of data exchange between different systems of technological-purpose automation and tasks that challenge developers in choosing the integration schemes are considered.  相似文献   
842.
Outwardly propagating intensity disturbances are a common feature in large, quiescent coronal loop structures. In this paper, an overview is given of the observed properties and the theoretical modelling. As a large number of events have been observed and analysed, good statistical results on the estimated parameters have now been obtained. The theoretical modelling mainly focuses on two distinct aspects, namely the observed rapid damping of the perturbations, thought to be due to thermal conduction and the origin of the driver. Leakage of the solar surface p-modes is the main candidate to explain the observed periodicity, due to the strong correlation between loop position and period and the filamentary nature of the observed coronal intensity perturbations. Recent observational results appear to confirm the leakage and subsequent upward propagation of the solar surface 5 minute oscillations into the overlying atmospheric layers.  相似文献   
843.
New Horizons Mission Design   总被引:1,自引:0,他引:1  
In the first mission to Pluto, the New Horizons spacecraft was launched on January 19, 2006, and flew by Jupiter on February 28, 2007, gaining a significant speed boost from Jupiter’s gravity assist. After a 9.5-year journey, the spacecraft will encounter Pluto on July 14, 2015, followed by an extended mission to the Kuiper Belt objects for the first time. The mission design for New Horizons went through more than five years of numerous revisions and updates, as various mission scenarios regarding routes to Pluto and launch opportunities were investigated in order to meet the New Horizons mission’s objectives, requirements, and goals. Great efforts have been made to optimize the mission design under various constraints in each of the key aspects, including launch window, interplanetary trajectory, Jupiter gravity-assist flyby, Pluto–Charon encounter with science measurement requirements, and extended mission to the Kuiper Belt and beyond. Favorable encounter geometry, flyby trajectory, and arrival time for the Pluto–Charon encounter were found in the baseline design to enable all of the desired science measurements for the mission. The New Horizons mission trajectory was designed as a ballistic flight from Earth to Pluto, and all energy and the associated orbit state required for arriving at Pluto at the desired time and encounter geometry were computed and specified in the launch targets. The spacecraft’s flight thus far has been extremely efficient, with the actual trajectory error correction ΔV being much less than the budgeted amount.  相似文献   
844.
Magnetic effects are ubiquitous and known to be crucial in space physics and astrophysical media. We have now the opportunity to probe these effects in the outer heliosphere with the two spacecraft Voyager 1 and 2. Voyager 1 crossed, in December 2004, the termination shock and is now in the heliosheath. On August 30, 2007 Voyager 2 crossed the termination shock, providing us for the first time in-situ measurements of the subsonic solar wind in the heliosheath. With the recent in-situ data from Voyager 1 and 2 the numerical models are forced to confront their models with observational data. Our recent results indicate that magnetic effects, in particular the interstellar magnetic field, are very important in the interaction between the solar system and the interstellar medium. We summarize here our recent work that shows that the interstellar magnetic field affects the symmetry of the heliosphere that can be detected by different measurements. We combined radio emission and energetic particle streaming measurements from Voyager 1 and 2 with extensive state-of-the art 3D MHD modeling, to constrain the direction of the local interstellar magnetic field. The orientation derived is a plane ~60°–90° from the galactic plane. This indicates that the field orientation differs from that of a larger scale interstellar magnetic field, thought to parallel the galactic plane. Although it may take 7–12 years for Voyager 2 to leave the heliosheath and enter the pristine interstellar medium, the subsonic flows are immediately sensitive to the shape of the heliopause. The flows measured by Voyager 2 in the heliosheath indicate that the heliopause is being distorted by local interstellar magnetic field with the same orientation as derived previously. As a result of the interstellar magnetic field the solar system is asymmetric being pushed in the southern direction. The presence of hydrogen atoms tend to symmetrize the solutions. We show that with a strong interstellar magnetic field with our most current model that includes hydrogen atoms, the asymmetries are recovered. It remains a challenge for future works with a more complete model, to explain all the observed asymmetries by V1 and V2. We comment on these results and implications of other factors not included in our present model.  相似文献   
845.
The paper reports the nightglow observations of hydroxyl (8–3), (7–2) and (6–2) Meinel band carried out at a low latitude station Kolhapur (16.8°N, 74.2°E, dip latitude 10.6°N), India during November 2002 to May 2005 with the objective of investigating mesopause dynamics based on derived OH rotational temperature. Overall, 132 nights of quality data were collected using filter-tilting photometer and an all-sky scanning photometer. The mean mesopause temperature observed at Kolhapur is 195 ± 11, 196 ± 9 and 195 ± 7 K from OH (8–3), (7–2) and (6–2) band emissions, respectively, using transition probabilities given by Langhoff et al. [Langhoff, S.R., Werner, H.J., Rosmus, P. Theoretical transition probabilities for the OH Meinel system. Journal of Molecular Spectroscopy 118, 507–529, 1986]. Small wave-like variations (periodicities ∼ few hours) existing over long period variations in derived temperatures are also present. A steady decrease of emission intensities from evening to dawn hours has been observed in approximately 59% of nights. No significant change of nightly mean temperatures has been noted. Furthermore, about 62% of observed nightly mean temperatures lie within one error bar of MSISE-90 model predictions.  相似文献   
846.
We present here new XMM-Newton observations of 3 relatively cool clusters at z ≈ 0.4, complemented by archival observations of 3 other clusters at similar redshift. We derived the MT and RT relations from the hydrostatic equation using an isothermal temperature distribution.  相似文献   
847.
Nowadays operational models for solar activity forecasting are still based on the statistical relationship between solar activity and solar magnetic field evolution. In order to set up this relationship, many parameters have been proposed to be the measures. Conventional measures are based on the sunspot group classification which provides limited information from sunspots. For this reason, new measures based on solar magnetic field observations are proposed and a solar flare forecasting model supported with an artificial neural network is introduced. This model is equivalent to a person with a long period of solar flare forecasting experience.  相似文献   
848.
Carcinogenesis is postulated to be a progressive multistage process characterized by an increase in genomic instability and clonal selection with each mutational event endowing a selective growth advantage. Genomic instability as manifested by the amplification of specific gene fragments is common among tumor and transformed cells. In the present study, immortalized human bronchial (BEP2D) cells were irradiated with graded doses of either 1GeV/nucleon 56Fe ions or 150 keV/μm alpha particles. Transformed cells developed through a series of successive steps before becoming tumorigenic in nude mice. Tumorigenic cells showed neither ras mutations nor deletion in the p16 tumor suppressor gene. In contrast, they harbored mutations in the p53 gene and over-expressed cyclin D1. Genomic instability among transformed cells at various stage of the carcinogenic process was examined based on frequencies of PALA resistance. Incidence of genomic instability was highest among established tumor cell lines relative to transformed, non-tumorigenic and control cell lines. Treatment of BEP2D cells with a 4 mM dose of the aminothiol WR-1065 significantly reduced their neoplastic transforming response to 56Fe particles. This model provides an opportunity to study the cellular and molecular mechanisms involved in malignant transformation of human epithelial cells by heavy ions.  相似文献   
849.
The region of South Atlantic Geomagnetic Anomaly (SAGA) was investigated by the Intercosmos-Bulgaria-1300 satellite, launched on August 7, 1981. On the basis of data obtained from 15 orbits during increased geomagnetic activity in August 1981, a map of the Anomaly was elaborated. Two centres of activity were identified. By means of the EMO-5 electrophotometer on board the Intercosmos-Bulgaria-1300 satellite, the atmosphere glow in lines λ 5577 Å, λ 6300 Å and λ 4278 Å was studied.  相似文献   
850.
Thermospheric temperature, composition and wind measurements from the Dynamics Explorer satellite (DE-2) are interpreted using a three dimensional, multiconstituent spectral model. The analysis accounts for tides driven by the absorbed solar radiation as well as energy and momentum coupling involving the magnetosphere and lower atmosphere. We discuss phenomena associated with the annual tide, polar circulation, magnetic storms and substorms.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号