首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   130篇
  免费   2篇
  国内免费   3篇
航空   47篇
航天技术   62篇
航天   26篇
  2021年   3篇
  2019年   4篇
  2018年   4篇
  2017年   2篇
  2016年   3篇
  2014年   11篇
  2013年   6篇
  2012年   6篇
  2011年   15篇
  2010年   5篇
  2009年   9篇
  2008年   17篇
  2007年   3篇
  2006年   2篇
  2004年   3篇
  2003年   4篇
  2002年   2篇
  2001年   4篇
  2000年   2篇
  1999年   3篇
  1998年   2篇
  1996年   3篇
  1994年   1篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
  1989年   2篇
  1988年   2篇
  1987年   1篇
  1985年   1篇
  1983年   1篇
  1981年   5篇
  1976年   1篇
  1973年   1篇
  1967年   1篇
  1965年   2篇
  1963年   1篇
排序方式: 共有135条查询结果,搜索用时 15 毫秒
21.
This paper describes the experimental and computational analyses of a high velocity aluminum projectile impact on an Al6061-T6 spacecraft inner wall at different oblique angles. Al2017-T4 spherical projectiles of 5.56 mm in diameter and 0.25 g in weight were chosen within the velocity range of 1000±200 m/s due to the limitation of the light gas gun. The energy absorbed was calculated by measuring the velocities before and after impact on the inner wall. The energy absorbed by the wall and the remaining energy carried by the projectile helped to estimate the severity of further damage to inner components. Afterwards, validation was done by using the commercially available software LS-DYNA with a dedicated SPH. On average, a 10% energy absorption difference between experimentation and simulation was found. By using C-SCAN, the damage area proportion of the total inner wall to impact penetration hole area was found to be on average 6%, 26% and 53% greater than the projectile cross sectional area for the oblique angle impacts of 30°, 45°, and 60°, respectively. These findings helped to understand the relationship between the oblique impact event and the damage area on a spacecraft inner wall along with space debris cloud propagation and comparison with experimental results using LS-DYNA.  相似文献   
22.
Ions of galactic origin are modified but not attenuated by the presence of shielding materials. Indeed, the number of particles and the absorbed energy behind most shield materials increases as a function of shield thickness. The modification of the galactic cosmic ray composition upon interaction with shielding is the only effective means of providing astronaut protection. This modification is intimately connected with the shield transport properties and is a strong function of shield composition. The systematic behavior of the shield properties in terms of microscopic energy absorption events will be discussed. The shield effectiveness is examined with respect to conventional protection practice and in terms of a biological endpoint: the efficiency for reduction of the probability of transformation of shielded C3H10T1/2 mouse cells. The relative advantage of developing new shielding technologies is discussed in terms of a shield performance as related to biological effect and the resulting uncertainty in estimating astronaut risk.  相似文献   
23.
The application of numerical techniques for the solution of various external and internal inviscid gaseous flowfields is considered. The construction of numerical codes is discussed. This discussion includes the comparison of explicit and implicit finite-difference schemes, the examination of possibilities of the shock-capturing techniques and the consideration of nonregular nets. Also the order of the finite-difference approximation is analysed. The effectiveness of these principles is demonstrated for various flowfield simulations.  相似文献   
24.
We derive bias-corrected X-ray luminosity functions (XLFs) of LMXBs detected in 14 E and S0 galaxies observed with Chandra. After correcting for incompleteness, the individual XLFs are statistically consistent with a single power-law. A break at or near LX,Eddington , as previously reported, is not required in any individual case. The combined XLF with a reduced error, however, suggests a possible break at LX = 5 × 1038 erg s−1, which may be consistent with the Eddington luminosity of neutron stars with the largest possible mass (3 M), or of He-enriched neutron star binaries. We confirm that the total X-ray luminosity of LMXBs is correlated with the the near-IR luminosities, but the scatter exceeds that expected from measurement errors. The scatter in LX(LMXB)/LK appears to be correlated with the specific frequency of globular clusters, as reported earlier.

We cross-correlate X-ray binaries with globular clusters determined by ground-based optical and HST observations in 6 giant elliptical galaxies. With the largest sample reported so far (300 GC LMXBs with a 5:2 ratio between red and blue GCs), we compare their X-ray properties, such as X-ray hardness, XLF and LX/LB and find no statistically significance difference between different groups of LMXBs. Regardless of their association with GCs, both GC and field LMXBs appear to follow the radial profile of the optical halo light, rather than that of more extended GCs. This suggests that while metallicity is a primary factor in the formation of LMXBs in GCs, there may be a secondary factor (e.g., encounter rate) playing a non-negligible role.  相似文献   

25.
A procedure to compute guidance commands for controlling the relative geometry of multiple unmanned aerial vehicles (UAVs) in formation flight is proposed. The concepts of branch, global leader, and local leader/follower are used to represent the whole formation geometry. A positive-definite function defined in terms of the formation error is then introduced and the Lyapunov stability theorem is used to obtain the cascade type guidance law. This scheme leads to the synchronized flight of all UAVs while maintaining formation geometry. The results of a high fidelity nonlinear simulation of a reconnaissance and surveillance mission example are presented to show the effectiveness of the proposed guidance law.  相似文献   
26.
Here we compare the traditional analog measure of geomagnetic activity, Ak, with the more recent digital indices of IHV and Ah based on hourly mean data, and their derivatives at the auroral station Sodankylä. By this selection of indices we study the effects of (i) analog vs. digital technique, and (ii) full local-time vs. local night-time coverage on quantifying local geomagnetic activity. We find that all other indices are stronger than Ak during the low-activity cycles 15–16 suggesting an excess of very low scalings in Ak at this time. The full-day indices consistently depict stronger correlation with the interplanetary magnetic field strength, while the night-time indices have higher correlation with solar wind speed. The Ak index correlates better with the digital indices of full-day coverage than with any night-time index. However, Ak depicts somewhat higher activity levels than the digital full-day indices in the declining phase of the solar cycle, indicating that, due to their different sampling rates, the latter indices are less sensitive to high-frequency variations driven by the Alfvén waves in high-speed streams. On the other hand, the night-time indices have an even stronger response to solar wind speed than Ak. The results strongly indicate that at auroral latitudes, geomagnetic indices with different local time coverage reflect different current systems, which, by an appropriate choice of indices, allows studying the century-scale dynamics of these currents separately.  相似文献   
27.
Plasma electrolytic oxidation (PEO) is carried out on 6061 Al-alloys in a weak alkaline electrolyte containing NaOH, Na2SiO3 and NaCl. Centered on the correlation of composition and structure, analyses by means of X-ray diffration (XRD), scanning electron microscope (SEM) and energy dispersive spectrometry (EDS) are conducted on the specimens, which have been PEO-treated under hybrid voltages of different direct current (DC) values (140-280 V) with constant alternate current (AC) amplitude (200 V). Attention is paid to the composition, properties and growth mechanism of oxide layers formed with hybrid voltages. Moreover, the main effects of DC value are discussed. Ceramic layers with a double-layer structure which combines hard outer and soft inner layers are found to be consist of α-Al2O3, γ-Al2O3 and mullite. With the DC values increasing, the growth of the ceramic layers tends to have increasingly obvious three-stage feature.  相似文献   
28.
Biased PNG law for impact with angular constraint   总被引:14,自引:0,他引:14  
A new homing guidance law is proposed to impact a target with a desired attitude angle. It is a variation of the conventional proportional navigation guidance (PNG) law which includes a supplementary time-varying bias. The proposed guidance law does not require a time-to-go estimation and has a simpler form. Analytic conditions for fulfilling the guidance goal are also provided. Simulation results demonstrate that the proposed guidance law has wider launch envelopes than the previous one and shows a good performance even against a maneuvering target  相似文献   
29.
The Advanced Thin Ionization Calorimeter (ATIC) Balloon Experiment had a successful test flight and a science flight in 2000–01 and 2002–03 and an unsuccessful launch in 2005–06 from McMurdo, Antarctica, returning 16 and 19 days of flight data. ATIC is designed to measure the spectra of cosmic rays (protons to iron). The instrument is composed of a Silicon matrix detector followed by a carbon target interleaved with scintillator tracking layers and a segmented BGO calorimeter composed of 320 individual crystals totaling 18 radiation lengths to determine the particle energy. BGO (Bismuth Germanate) is an inorganic scintillation crystal and its light output depends not only on the energy deposited by particles but also on the temperature of the crystal. The temperature of balloon instruments during flight is not constant due to sun angle variations as well as differences in albedo from the ground. The change in output for a given energy deposit in the crystals in response to temperature variations was determined.  相似文献   
30.
The Advanced Thin Ionization Calorimeter (ATIC) experiment is designed to investigate the charge composition and energy spectra of primary cosmic rays over the energy range from about 1011 to 1014 eV during Long Duration Balloon (LDB) flights from McMurdo, Antarctica. Currently, analysis from the ATIC-1 test flight and ATIC-2 science flight is underway and preparation for a second science flight is in progress. Charge identification of the incident cosmic ray is accomplished, primarily, by a pixilated Silicon Matrix detector located at the very top of the instrument. While it has been shown that the Silicon Matrix detector provides good charge identification even in the presence of electromagnetic shower backscatter from the calorimeter, the detector only measures the charge once. In this paper, we examine use of the top scintillator hodoscope detector to provide a second measure of the cosmic ray charge and, thus, improve the ATIC charge identification.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号