首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   25篇
  免费   0篇
航空   20篇
航天技术   5篇
  2021年   1篇
  2012年   1篇
  2011年   2篇
  2010年   4篇
  2008年   6篇
  2007年   6篇
  2004年   1篇
  2000年   1篇
  1997年   1篇
  1985年   1篇
  1980年   1篇
排序方式: 共有25条查询结果,搜索用时 15 毫秒
21.
The scientific objectives, design and capabilities of the Rosetta Lander’s ROMAP instrument are presented. ROMAP’s main scientific goals are longterm magnetic field and plasma measurements of the surface of Comet 67P/Churyumov-Gerasimenko in order to study cometary activity as a function of heliocentric distance, and measurements during the Lander’s descent to investigate the structure of the comet’s remanent magnetisation. The ROMAP fluxgate magnetometer, electrostatic analyser and Faraday cup measure the magnetic field from 0 to 32 Hz, ions of up to 8000 keV and electrons of up to 4200 keV. Additional two types of pressure sensors – Penning and Minipirani – cover a pressure range from 10−8 to 101 mbar. ROMAP’s sensors and electronics are highly integrated, as required by a combined field/plasma instrument with less than 1 W power consumption and 1 kg mass.  相似文献   
22.
The Rosetta Mission: Flying Towards the Origin of the Solar System   总被引:1,自引:0,他引:1  
The ROSETTA Mission, the Planetary Cornerstone Mission in the European Space Agency’s long-term programme Horizon 2000, will rendezvous in 2014 with comet 67P/Churyumov-Gerasimenko close to its aphelion and will study the physical and chemical properties of the nucleus, the evolution of the coma during the comet’s approach to the Sun, and the development of the interaction region of the solar wind and the comet, for more than one year until it reaches perihelion. In addition to the investigations performed by the scientific instruments on board the orbiter, the ROSETTA lander PHILAE will be deployed onto the surface of the nucleus. On its way to comet 67P/Churyumov-Gerasimenko, ROSETTA will fly by and study the two asteroids 2867 Steins and 21 Lutetia.  相似文献   
23.
24.
We present observations from the first passage through the lunar plasma wake by one of two spacecraft comprising ARTEMIS (Acceleration, Reconnection, Turbulence, and Electrodynamics of the Moon??s Interaction with the Sun), a new lunar mission that re-tasks two of five probes from the THEMIS magnetospheric mission. On Feb 13, 2010, ARTEMIS probe P1 passed through the wake at ??3.5 lunar radii downstream from the Moon, in a region between those explored by Wind and the Lunar Prospector, Kaguya, Chandrayaan, and Chang??E missions. ARTEMIS observed interpenetrating proton, alpha particle, and electron populations refilling the wake along magnetic field lines from both flanks. The characteristics of these distributions match expectations from self-similar models of plasma expansion into vacuum, with an asymmetric character likely driven by a combination of a tilted interplanetary magnetic field and an anisotropic incident solar wind electron population. On this flyby, ARTEMIS provided unprecedented measurements of the interpenetrating beams of both electrons and ions naturally produced by the filtration and acceleration effects of electric fields set up during the refilling process. ARTEMIS also measured electrostatic oscillations closely correlated with counter-streaming electron beams in the wake, as previously hypothesized but never before directly measured. These observations demonstrate the capability of the comprehensively instrumented ARTEMIS spacecraft and the potential for new lunar science from this unique two spacecraft constellation.  相似文献   
25.
THEMIS was launched on February 17, 2007 to determine the trigger and large-scale evolution of substorms. During the first seven months of the mission the five satellites coasted near their injection orbit to avoid differential precession in anticipation of orbit placement, which started in September 2007 and led to a commencement of the baseline mission in December 2007. During the coast phase the probes were put into a string-of-pearls configuration at 100 s of km to 2 RE along-track separations, which provided a unique view of the magnetosphere and enabled an unprecedented dataset in anticipation of the first tail season. In this paper we describe the first THEMIS substorm observations, captured during instrument commissioning on March 23, 2007. THEMIS measured the rapid expansion of the plasma sheet at a speed that is commensurate with the simultaneous expansion of the auroras on the ground. These are the first unequivocal observations of the rapid westward expansion process in space and on the ground. Aided by the remote sensing technique at energetic particle boundaries and combined with ancillary measurements and MHD simulations, they allow determination and mapping of space currents. These measurements show the power of the THEMIS instrumentation in the tail and the radiation belts. We also present THEMIS Flux Transfer Events (FTE) observations at the magnetopause, which demonstrate the importance of multi-point observations there and the quality of the THEMIS instrumentation in that region of space.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号