首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4870篇
  免费   12篇
  国内免费   12篇
航空   2238篇
航天技术   1896篇
综合类   23篇
航天   737篇
  2021年   38篇
  2019年   35篇
  2018年   106篇
  2017年   55篇
  2016年   60篇
  2015年   20篇
  2014年   104篇
  2013年   153篇
  2012年   108篇
  2011年   161篇
  2010年   124篇
  2009年   221篇
  2008年   285篇
  2007年   124篇
  2006年   119篇
  2005年   124篇
  2004年   129篇
  2003年   166篇
  2002年   96篇
  2001年   170篇
  2000年   89篇
  1999年   116篇
  1998年   134篇
  1997年   104篇
  1996年   117篇
  1995年   149篇
  1994年   159篇
  1993年   80篇
  1992年   111篇
  1991年   50篇
  1990年   51篇
  1989年   110篇
  1988年   50篇
  1987年   49篇
  1986年   54篇
  1985年   160篇
  1984年   124篇
  1983年   101篇
  1982年   132篇
  1981年   143篇
  1980年   43篇
  1979年   49篇
  1978年   50篇
  1977年   25篇
  1975年   34篇
  1974年   28篇
  1973年   28篇
  1972年   30篇
  1970年   21篇
  1969年   20篇
排序方式: 共有4894条查询结果,搜索用时 10 毫秒
311.
312.
Initial results of a combined study of electron events using the 3DP experiment on the WIND spacecraftand the Nançay Radioheliograph (NRH) are presented. A total of 57 electron events whose solar release time could be inferred from WIND/3DP observations occurred during NRH observing times. In 40 of them a distinct signature was detected in maps at decimetric and metric wavelengths (dm-m-λ) taken by the NRH. These events are equally distributed among two categories: (1) Electron release together with dm-m-λ bursts of a few minutes duration: these events are also accompanied by decametric-hectometric type III bursts seen by WAVES/WIND. They correspond to the well-known impulsive electron events. (2) Electron release during long duration (several tens of minutes) dm-m-λ emission: the electrons are most often released more than ten minutes after the start of the radio event. In the majority of cases the dm-m-λ radio source changes position, size, and/or intensity near the time of electron release.  相似文献   
313.
Processes in the solar corona are prodigious accelerators of energetic ions, and electrons. The angular distribution, composition, and spectra of energetic particles observed near Earth gives information on the acceleration mechanisms. A class of energetic particle observations particularly useful in understanding the solar acceleration is the near-relativistic impulsive beam-like electron events. During five years of operation the Advanced Composition Explorer (ACE) has measured well over 400 electron events. Approximately 25% of these electron events are impulsive beam-like events that are released onto interplanetary field lines predominantly from western solar longitudes. We extend our initial 3 year study during the rise to solar maximum (Haggerty and Roelof, 2002; Simnett et al., 2002) to a five year statistical analysis of these beam-like energetic electron events in relationship to optical flares, microwave emission, soft X-ray emission, metric and decametric type-III radio bursts, and coronal mass ejections.  相似文献   
314.
Induced abnormality in Mir- and Earth grown Super Dwarf wheat.   总被引:4,自引:0,他引:4  
Super-dwarf wheat grown on the Mir space station using the Svet "Greenhouse" exhibited morphological, metabolic and reproductive abnormalities compared with Earth-grown wheat. Of prominent importance were the abnormalities associated with reproductive ontogeny and the total absence of seed formation on Mir. Changes in the apical meristem associated with transition from the vegetative phase to floral initiation and development of the reproductive spike were all typical of 'Super-Dwarf' wheat up to the point of anthesis. Observation of ruptured anthers from the Mir-grown plants revealed what appeared to be normally developed pollen. These pollen gains, however, contained only one nuclei, while normal viable pollen is tri-nucleate. A potentially important difference in the flight experiment, compared with ground reference studies, was the presence of a high level of atmospheric ethylene (1,200 ppb). Ground studies conducted by exposing 'Super-Dwarf' wheat to ethylene just prior to anthesis resulted in manifestation of the same abnormalities observed in the space flight samples.  相似文献   
315.
Changes in the vacuolation in root apex cells of soybean (Glycine max L. [Merr.]) seedlings grown in microgravity were investigated. Spaceflight and ground control seedlings were grown in the absence or presence of KMnO4 (to remove ethylene) for 6 days. After landing, in order to study of cell ultrastructure and subcellular free calcium ion distribution, seedling root apices were fixed in 2.5% (w/v) glutaraldehyde in 0.1 M cacodylate buffer and 2% (w/v) glutaraldehyde, 2.5% (w/v) formaldehyde, 2% (w/v) potassium antimonate K[Sb(OH)6] in 0.1 M K2HPO4 buffer with an osmolarity (calculated theoretically) of 0.45 and 1.26 osmol. The concentrations of ethylene in all spaceflight canisters were significantly higher than in the ground control canisters. Seedling growth was reduced in the spaceflight-exposed plants. Additionally, the spaceflight-exposed plants exhibited progressive vacuolation in the root apex cells, particularly in the columella cells, to a greater degree than the ground controls. Plasmolysis was observed in columella cells of spaceflight roots fixed in solutions with relatively high osmolarity (1.26 osmol). The appearance of plasmolysis permitted the evaluation of the water status of cells. The water potential of the spaceflight cells was higher than the surrounding fixative solution. A decrease in osmotic potential and/or an increase in turgor potential may have induced increases in cell water potential. However, the plasmolysed (i.e. non-turgid) cells implied that increases in water potential were accompanied with a decrease in osmotic potential. In such cells changes in vacuolation may have been involved to maintain turgor pressure or may have been a result of intensification of other vacuolar functions like digestion and storage.  相似文献   
316.
High-energy solar particles, produced in association with solar flares and coronal mass ejections, occasionally bombard the earth's atmosphere. resulting in radiation intensities additional to the background cosmic radiation. Access of these particles to the earth's vicinity during times of geomagnetic disturbances are not adequately described by using static geomagnetic field models. These solar fluxes are also often distributed non uniformly in space, so that fluxes measured by satellites obtained at great distances from the earth and which sample large volumes of space around the earth cannot be used to predict fluxes locally at the earth's surface. We present here a method which uses the ground-level neutron monitor counting rates as adjoint sources of the flux in the atmosphere immediately above them to obtain solar-particle effective dose rates as a function of position over the earth's surface. We have applied this approach to the large September 29-30, 1989 ground-level event (designated GLE 42) to obtain the magnitude and distribution of the solar-particle effective dose rate from an atypically large event. The results of these calculations clearly show the effect of the softer particle spectra associated with solar particle events, as compared with galactic cosmic rays, results in a greater sensitivity to the geomagnetic field, and, unlike cosmic rays, the near-absence of a "knee" near 60 degrees geomagnetic latitude.  相似文献   
317.
Intensive measurements of UV solar irradiance, total ozone and surface ozone were carried out during the solar eclipse of 11 August 1999 at Thessaloniki, Greece and Stara Zagora, Bulgaria, located very close to the footprint of the moon's shadow during the solar eclipse with the maximum coverage of the solar disk reaching about 90% and 96% respectively. It is shown that during the eclipse the diffuse component is reduced less compared to the decline of the direct solar irradiance at the shorter wavelengths. A 20-minute oscillation of erythemal UV-B solar irradiance was observed before and after the time of the eclipse maximum under clear skies, indicating a possible 20-minute fluctuation in total ozone presumably caused by the eclipse induced gravity waves. The surface ozone measurements at Thessaloniki display a decrease of around 10–15 ppbv during the solar eclipse. Similarly, ozone profile measurements with a lidar system indicate a decrease of ozone up to 2 km during the solar eclipse. The eclipse offered the opportunity to test our understanding of tropospheric ozone chemistry. The use of a chemical box model suggested that photochemistry can account for a significant portion of the observed surface ozone decrease.  相似文献   
318.
We report a study of the numeric solution to the diffusive transport equation for energetic protons magnetically trapped in the Earth's equatorial magnetosphere. The analysis takes into account the pertinent physical processes in this region, including deceleration of protons by Coulomb collisional interactions with free and bound electrons, the charge exchange process, cosmic ray albedo neutron decay source, and electric and magnetic radial diffusion. These results were obtained using the Finite Element Method with magnetic moment and geomagnetic L-shell as free variables. Steady state boundary conditions were imposed at L=1 as zero distribution function and at L=7 with proton distribution function extracted from ATS 6 satellite observations. The FEM-code yields unidirectional proton flux in the energy range of 0.1–1000 MeV at the equatorial top of the geomagnetic lines, and the results are found to be in satisfactorily agreement with the empirical NASA AP-8 model proton flux within the energy range of 0.5–100 MeV. Below 500 keV, the empirical AP-8 model proton fluxes are several orders of magnitude greater than those computed with the FEM-code at L<3. This discrepancy is difficult to explain by uncertainties of boundary spectrum parameters or transport coefficients.  相似文献   
319.
During the construction phase of the International Space Station (ISS), early flight opportunities have been identified (including designated Utilization Flights, UF) on which early science experiments may be performed. The focus of NASA's and other agencies' biological studies on the early flight opportunities is cell and molecular biology; with UF-1 scheduled to fly in fall 2001, followed by flights 8A and UF-3. Specific hardware is being developed to verify design concepts, e.g., the Avian Development Facility for incubation of small eggs and the Biomass Production System for plant cultivation. Other hardware concepts will utilize those early research opportunities onboard the ISS, e.g., an Incubator for sample cultivation, the European Modular Cultivation System for research with small plant systems, an Insect Habitat for support of insect species. Following the first Utilization Flights, additional equipment will be transported to the ISS to expand research opportunities and capabilities, e.g., a Cell Culture Unit, the Advanced Animal Habitat for rodents, an Aquatic Facility to support small fish and aquatic specimens, a Plant Research Unit for plant cultivation, and a specialized Egg Incubator for developmental biology studies. Host systems (Figure 1A, B: see text), e.g., a 2.5 m Centrifuge Rotor (g-levels from 0.01-g to 2-g) for direct comparisons between g and selectable g levels, the Life Sciences Glovebox for contained manipulations, and Habitat Holding Racks (Figure 1B: see text) will provide electrical power, communication links, and cooling to the habitats. Habitats will provide food, water, light, air and waste management as well as humidity and temperature control for a variety of research organisms. Operators on Earth and the crew on the ISS will be able to send commands to the laboratory equipment to monitor and control the environmental and experimental parameters inside specific habitats. Common laboratory equipment such as microscopes, cryo freezers, radiation dosimeters, and mass measurement devices are also currently in design stages by NASA and the ISS international partners.  相似文献   
320.
Many bodies in the outer Solar System display the presence of low albedo materials. These materials, evident on the surface of asteroids, comets, Kuiper Belt objects and their intermediate evolutionary step, Centaurs, are related to macromolecular carbon bearing materials such as polycyclic aromatic hydrocarbons and organic materials such as methanol and related light hydrocarbons, embedded in a dark, refractory, photoprocessed matrix. Many planetary rings and satellites around the outer gaseous planets display such component materials. One example, Saturn's largest satellite, Titan, whose atmosphere is comprised of around 90% molecular nitrogen N2 and less than 10% methane CH4, displays this kind of low reflectivity material in its atmospheric haze. These materials were first recorded during the Voyager 1 and 2 flybys of Titan and showed up as an optically thick pinkish orange haze layer. These materials are broadly classified into a chemical group whose laboratory analogs are termed "tholins", after the Greek word for "muddy". Their analogs are produced in the laboratory via the irradiation of gas mixtures and ice mixtures by radiation simulating Solar ultraviolet (UV) photons or keV charged particles simulating particles trapped in Saturn's magnetosphere. Fair analogs of Titan tholin are produced by bombarding a 9:1 mixture of N2:CH4 with charged particles and its match to observations of both the spectrum and scattering properties of the Titan haze is very good over a wide range of wavelengths. In this paper, we describe the historical background of laboratory research on this kind of organic matter and how our laboratory investigations of Titan tholin compare. We comment on the probable existence of polycyclic aromatic hydrocarbons in the Titan Haze and how biological and nonbiological racemic amino acids produced from the acid hydrolysis of Titan tholins make these complex organic compounds prime candidates in the evolution of terrestrial life and extraterrestrial life in our own Solar System and beyond. Finally, we also compare the spectrum and scattering properties of our resulting tholin mixtures with those observed on Centaur 5145 Pholus and the dark hemisphere of Saturn's satellite Iapetus in order to demonstrate the widespread distribution of similar organics throughout the Solar System.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号