全文获取类型
收费全文 | 2839篇 |
免费 | 7篇 |
国内免费 | 8篇 |
专业分类
航空 | 1294篇 |
航天技术 | 1172篇 |
综合类 | 14篇 |
航天 | 374篇 |
出版年
2021年 | 23篇 |
2019年 | 28篇 |
2018年 | 58篇 |
2017年 | 26篇 |
2016年 | 40篇 |
2015年 | 12篇 |
2014年 | 62篇 |
2013年 | 77篇 |
2012年 | 68篇 |
2011年 | 92篇 |
2010年 | 66篇 |
2009年 | 123篇 |
2008年 | 191篇 |
2007年 | 83篇 |
2006年 | 70篇 |
2005年 | 68篇 |
2004年 | 76篇 |
2003年 | 93篇 |
2002年 | 65篇 |
2001年 | 87篇 |
2000年 | 55篇 |
1999年 | 60篇 |
1998年 | 77篇 |
1997年 | 52篇 |
1996年 | 60篇 |
1995年 | 85篇 |
1994年 | 86篇 |
1993年 | 51篇 |
1992年 | 70篇 |
1991年 | 36篇 |
1990年 | 30篇 |
1989年 | 68篇 |
1988年 | 24篇 |
1987年 | 30篇 |
1986年 | 29篇 |
1985年 | 102篇 |
1984年 | 73篇 |
1983年 | 66篇 |
1982年 | 77篇 |
1981年 | 88篇 |
1980年 | 29篇 |
1979年 | 39篇 |
1978年 | 25篇 |
1977年 | 17篇 |
1976年 | 12篇 |
1975年 | 11篇 |
1974年 | 14篇 |
1973年 | 15篇 |
1972年 | 14篇 |
1970年 | 12篇 |
排序方式: 共有2854条查询结果,搜索用时 15 毫秒
181.
Yu. A. Gravchenko B. K. Grankin V. V. Kozlov S. V. Chirva 《Russian Aeronautics (Iz VUZ)》2017,60(3):327-334
The paper adduces the relators for algebraic operations on graphs using the numeric codes of the graphs. The special algebra of codes has been devised with consideration of the principles of graph transformation. This paper demonstrates the relevance of numeric coding of graphs for solving the problems of enumeration, systematization, and compact representation of the information about the structural and functional characteristics of the systems of flow distribution and conversion of rocket and space technology and for conducting the modeling transformations of given systems in the course of the structural and functional studies as well. 相似文献
182.
In the paper, processes of high-energy electron beam interaction with plasma particles in a discharge channel of a stationary plasma thruster are analyzed and the results are presented. 相似文献
183.
S. B. Mende H. U. Frey K. Rider C. Chou S. E. Harris O. H. W. Siegmund S. L. England C. Wilkins W. Craig T. J. Immel P. Turin N. Darling J. Loicq P. Blain E. Syrstad B. Thompson R. Burt J. Champagne P. Sevilla S. Ellis 《Space Science Reviews》2017,212(1-2):655-696
ICON Far UltraViolet (FUV) imager contributes to the ICON science objectives by providing remote sensing measurements of the daytime and nighttime atmosphere/ionosphere. During sunlit atmospheric conditions, ICON FUV images the limb altitude profile in the shortwave (SW) band at 135.6 nm and the longwave (LW) band at 157 nm perpendicular to the satellite motion to retrieve the atmospheric O/N2 ratio. In conditions of atmospheric darkness, ICON FUV measures the 135.6 nm recombination emission of \(\mathrm{O}^{+}\) ions used to compute the nighttime ionospheric altitude distribution. ICON Far UltraViolet (FUV) imager is a Czerny–Turner design Spectrographic Imager with two exit slits and corresponding back imager cameras that produce two independent images in separate wavelength bands on two detectors. All observations will be processed as limb altitude profiles. In addition, the ionospheric 135.6 nm data will be processed as longitude and latitude spatial maps to obtain images of ion distributions around regions of equatorial spread F. The ICON FUV optic axis is pointed 20 degrees below local horizontal and has a steering mirror that allows the field of view to be steered up to 30 degrees forward and aft, to keep the local magnetic meridian in the field of view. The detectors are micro channel plate (MCP) intensified FUV tubes with the phosphor fiber-optically coupled to Charge Coupled Devices (CCDs). The dual stack MCP-s amplify the photoelectron signals to overcome the CCD noise and the rapidly scanned frames are co-added to digitally create 12-second integrated images. Digital on-board signal processing is used to compensate for geometric distortion and satellite motion and to achieve data compression. The instrument was originally aligned in visible light by using a special grating and visible cameras. Final alignment, functional and environmental testing and calibration were performed in a large vacuum chamber with a UV source. The test and calibration program showed that ICON FUV meets its design requirements and is ready to be launched on the ICON spacecraft. 相似文献
184.
Reconfiguration of multiprocessor systems makes it possible to improve their failure-resistance that is especially important for the integrated modular avionics systems. The algorithm considered in this paper allows minimizing the reservation and providing the better safety level and more effective flight completion or even its further execution in the case of failures of airborne equipment. 相似文献
185.
I. M. Zakirov K. A. Alekseev R. A. Kayumov I. R. Gainutdinov 《Russian Aeronautics (Iz VUZ)》2009,52(3):347-350
We consider some general problems of improving the strength characteristics of folded cores as well as the corresponding techniques
for modifying the core material polymer surfaces with the use of nanotechnologies and the “mass-strength” criteria. 相似文献
186.
The use of adaptive linear techniques to solve signal processing problems is needed particularly when the interference environment external to the signal processor (such as for a radar or communication system) is not known a priori. Due to this lack of knowledge of an external environment, adaptive techniques require a certain amount of data to cancel the external interference. The number of statistically independent samples per input sensor required so that the performance of the adaptive processor is close (nominally within 3 dB) to the optimum is called the convergence measure of effectiveness (MOE) of the processor. The minimization of the convergence MOE is important since in many environments the external interference changes rapidly with time. Although there are heuristic techniques in the literature that provide fast convergence for particular problems, there is currently not a general solution for arbitrary interference that is derived via classical theory. A maximum likelihood (ML) solution (under the assumption that the input interference is Gaussian) is derived here for a structured covariance matrix that has the form of the identity matrix plus an unknown positive semi-definite Hermitian (PSDH) matrix. This covariance matrix form is often valid in realistic interference scenarios for radar and communication systems. Using this ML estimate, simulation results are given that show that the convergence is much faster than the often-used sample matrix inversion method. In addition, the ML solution for a structured covariance matrix that has the aforementioned form where the scale factor on the identity matrix is arbitrarily lower-bounded, is derived. Finally, an efficient implementation is presented. 相似文献
187.
Blunt Shannon D. Shackelford Aaron K. Gerlach Karl Smith Kevin J. 《IEEE transactions on aerospace and electronic systems》2009,45(2):647-659
The effects of target Doppler are addressed in relation to adaptive receive processing for radar pulse compression. To correct for Doppler-induced filter mismatch over a single pulse, the Doppler-compensated adaptive pulse compression (DC-APC) algorithm is presented whereby the respective Doppler shifts for large target returns are jointly estimated with the illuminated range profile and subsequently incorporated into the original APC adaptive receive filter formulation. As a result, the Doppler-mismatch-induced range sidelobes can be suppressed thereby regaining a significant portion of the sensitivity improvement that is possible when applying adaptive pulse compression (APC) without the existence of significant Doppler mismatch. In contrast, instead of compensating for Doppler mismatch, the single pulse imaging (SPI) algorithm generalizes the APC formulation for a bank of Doppler-shifted matched filters thereby producing a sidelobe-suppressed range-Doppler image from the return signal of a single radar pulse which is applicable for targets with substantial variation in Doppler. Both techniques are based on the recently proposed APC algorithm and its generalization, the multistatic adaptive pulse compression (MAPC) algorithm, which have been shown to be effective for the suppression of pulse compression range sidelobes thus dramatically increasing the sensitivity of pulse compression radar. 相似文献
188.
The significance of external influences on the environment of Earth and its atmosphere has become evident during recent years.
Especially, on time scales of several hundred years, the cosmogenic isotope concentration during the Wolf-, Spoerer-, Maunder-
and Dalton-Minimum indicates an increased cosmic ray flux. Because these grand minima of solar activity coincide with cold
periods, a correlation of the Earth climate with the cosmic ray intensities is plausible. Any quantitative study of the effects
of energetic particles on the atmosphere and environment of the Earth must address their transport to Earth and their interactions
with the Earth’s atmosphere including their filtering by the terrestrial magnetosphere. The first problem is one of the fundamental
problems in modern cosmic ray astrophysics, and corresponding studies began in the 1960s based on Parker’s cosmic ray modulation
theory taking into account diffusion, convection, adiabatic deceleration, and (later) the drift of energetic particles in
the global heliospheric magnetic field. It is well established that all of these processes determining the modulation of cosmic
rays are depending on parameters that are varying with the solar magnetic cycle. Therefore, the galactic cosmic ray intensities
close to Earth is the result of a complex modulation of the interstellar galactic spectrum within the heliosphere. The modern
view of this cosmic ray modulation is summarized in our contribution. 相似文献
189.
Adaptive pulse compression via MMSE estimation 总被引:2,自引:0,他引:2
Radar pulse compression involves the extraction of an estimate of the range profile illuminated by a radar in the presence of noise. A problem inherent to pulse compression is the masking of small targets by large nearby targets due to the range sidelobes that result from standard matched filtering. This paper presents a new approach based upon a minimum mean-square error (MMSE) formulation in which the pulse compression filter for each individual range cell is adaptively estimated from the received signal in order to mitigate the masking interference resulting from matched filtering in the vicinity of large targets. The proposed method is compared with the standard matched filter and least-squares (LS) estimation and is shown to be superior over a variety of stressing scenarios. 相似文献
190.