全文获取类型
收费全文 | 2826篇 |
免费 | 12篇 |
国内免费 | 5篇 |
专业分类
航空 | 1292篇 |
航天技术 | 1164篇 |
综合类 | 14篇 |
航天 | 373篇 |
出版年
2021年 | 23篇 |
2019年 | 27篇 |
2018年 | 58篇 |
2017年 | 26篇 |
2016年 | 40篇 |
2015年 | 12篇 |
2014年 | 62篇 |
2013年 | 77篇 |
2012年 | 68篇 |
2011年 | 92篇 |
2010年 | 66篇 |
2009年 | 119篇 |
2008年 | 190篇 |
2007年 | 83篇 |
2006年 | 70篇 |
2005年 | 68篇 |
2004年 | 76篇 |
2003年 | 93篇 |
2002年 | 64篇 |
2001年 | 87篇 |
2000年 | 55篇 |
1999年 | 60篇 |
1998年 | 77篇 |
1997年 | 52篇 |
1996年 | 60篇 |
1995年 | 82篇 |
1994年 | 86篇 |
1993年 | 51篇 |
1992年 | 70篇 |
1991年 | 36篇 |
1990年 | 30篇 |
1989年 | 68篇 |
1988年 | 24篇 |
1987年 | 30篇 |
1986年 | 28篇 |
1985年 | 102篇 |
1984年 | 73篇 |
1983年 | 66篇 |
1982年 | 77篇 |
1981年 | 88篇 |
1980年 | 29篇 |
1979年 | 39篇 |
1978年 | 25篇 |
1977年 | 17篇 |
1976年 | 12篇 |
1975年 | 11篇 |
1974年 | 14篇 |
1973年 | 15篇 |
1972年 | 14篇 |
1970年 | 12篇 |
排序方式: 共有2843条查询结果,搜索用时 15 毫秒
101.
H Yasuda T Komiyama K Fujitaka 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2002,30(4):1011-1015
The fluence of high-LET particles (HLP) with LET infinity H2O greater than 15 keV micrometers-1 in selected organs and tissues were measured with plastic nuclear track detectors using a life-size human phantom on the 9th Shuttle-Mir Mission (STS-91). The planar-track fluence of HLP during the 9.8-day mission ranged from 1.9 x 10(3) n cm-2 (bladder) to 5.1 x 10(3) n cm-2 (brain) by a factor of 2.7. Based on these data, a probability of HLP hits to a matured cell of each organ or tissue was roughly estimated for a 90-day ISS mission. In the calculation, all cells were assumed to be spheres with a geometric cross-sectional area of 500 micrometers2 and the cell-hit frequency from isotropic space radiation can be described by the Poisson-distribution function. As results, the probability of one or more than 1 hit to a single cell by HLP for 90 days ranged from 17% to 38%; that of two or more than 2 hits was estimated to be 1.3-8.2%. 相似文献
102.
M Oguchi K Otsubo K Nitta A Shimada S Fujii T Koyano K Miki 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1989,9(8):169-177
In CELSS (Controlled Ecological Life Support System), utilization of photosynthetic algae is an effective means for obtaining food and oxygen at the same time. We have chosen Spirulina, a blue-green alga, and have studied possibilities of algae utilization. We have developed an advanced algae cultivation system, which is able to produce algae continuously in a closed condition. Major features of the new system are as follows. (1) In order to maintain homogeneous culture conditions, the cultivator was designed so as to cause a swirl on medium circulation. (2) Oxygen gas separation and carbon dioxide supply are conducted by a newly designed membrane module. (3) Algae mass and medium are separated by a specially designed harvester. (4) Cultivation conditions, such as pH, temperature, algae growth rate, light intensity and quantity of generated oxygen gas are controlled by a computer system and the data are automatically recorded. This equipment is a primary model for ground experiments in order to obtain some design data for space use. A feasibility of algae cultivation in a closed condition is discussed on the basis of data obtained by use of this new system. 相似文献
103.
J W Wilson R K Tripathi G D Qualls F A Cucinotta R E Prael J W Norbury J H Heinbockel J Tweed 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2004,34(6):1319-1327
Improved spacecraft shield design requires early entry of radiation constraints into the design process to maximize performance and minimize costs. As a result, we have been investigating high-speed computational procedures to allow shield analysis from the preliminary design concepts to the final design. In particular, we will discuss the progress towards a full three-dimensional and computationally efficient deterministic code for which the current HZETRN evaluates the lowest-order asymptotic term. HZETRN is the first deterministic solution to the Boltzmann equation allowing field mapping within the International Space Station (ISS) in tens of minutes using standard finite element method (FEM) geometry common to engineering design practice enabling development of integrated multidisciplinary design optimization methods. A single ray trace in ISS FEM geometry requires 14 ms and severely limits application of Monte Carlo methods to such engineering models. A potential means of improving the Monte Carlo efficiency in coupling to spacecraft geometry is given in terms of re-configurable computing and could be utilized in the final design as verification of the deterministic method optimized design. 相似文献
104.
M W Zimmermann K E Gartenbach A R Kranz 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1994,14(10):47-51
This article highlights the first results of investigations on the general vitality and damage endpoints caused by cosmic ionizing radiation in dry, dormant plant seeds of the crucifer plant Arabidopsis thaliana (L.) Heynh. and the ascomycete Sordaria fimicola after 69 month stay in space. Wild-type and mutant gene marker lines were included in Free Flyer Biostack containers and exposed on earth and side tray of the LDEF-1 satellite. The damage in biological endpoints observed in the seeds increased in the side tray sample compared to the earth tray sample. For the ascospores we found different effects depending on the biological endpoints investigated for both expositions. 相似文献
105.
R Facius K Scherer G Reitz H Bucker L V Nevzgodina E N Maximova 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1994,14(10):93-103
The potentially specific importance of the heavy ions of the galactic cosmic radiation for radiation protection in manned spaceflight continues to stimulate in situ, i.e., spaceflight experiments to investigate their radiobiological properties. Chromosome aberrations as an expression of a direct assault on the genome are of particular interest in view of cancerogenesis being the primary radiation risk for man in space. In such investigations the establishment of the geometrical correlation between heavy ions' trajectories and the location of radiation sensitive biological substructures is an essential task. The overall qualitative and quantitative precision achieved for the identification of particle trajectories in the order of approximately 10 micrometers as well as the contributing sources of uncertainties are discussed. We describe how this was achieved for seeds of Lactuca sativa as biological test organisms, whose location and orientation had to be derived from contact photographies displaying their outlines and those of the holder plates only. The incidence of chromosome aberrations in cells exposed during the COSMOS 1887 (Biosatellite 8) and the COSMOS 2044 (Biosatellite 9) mission was determined for seeds hit by cosmic heavy ions. In those seeds the incidence of both single and multiple chromosome aberrations was enhanced. The results of the Biosatellite 9 experiment, however, are confounded by spaceflight effects unrelated to the passage of heavy ions. 相似文献
106.
K Kobayashi H Masuda K I Ushio A Ohashi H Yamanashi T Kaneko J I Takahashi T Hosokawa H Hashimoto T Saito 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2001,27(2):207-215
Various types of organic compounds have been detected in Jupiter, Titan, and cometary coma. It is probable that organic compounds were formed in primitive Earth and Mars atmospheres. Cosmic rays and solar UV are believed to be two major energy sources for organic formation in space. We examined energetics of organic formation in simulated planetary atmospheres. Gas mixtures including a C-source (carbon monoxide or methane) and a N-source (nitrogen or ammonia) was irradiated with the followings: High energy protons or electrons from accelerators, gamma-rays from 60Co, UV light from a deuterium lamp, and soft X-rays or UV light from an electron synchrotron. Amino acids were detected in the products of particles, gamma-rays and soft X-rays irradiation from each gas mixture examined. UV light gave, however, no amino acid precursors in the gas mixture of carbon monoxide, nitrogen and nitrogen. It gave only a trace of them in the gas mixture of carbon monoxide, ammonia and water or that of methane, nitrogen and water. Yield of amino acid precursors by photons greatly depended on their wavelength. These results suggest that nitrogen-containing organic compounds like amino acid precursors were formed chiefly with high energy particles, not UV photons, in Titan or primitive Earth/Mars atmospheres where ammonia is not available as a predominant N-source. 相似文献
107.
K Mori H Ohya K Matsumoto H Furuune K Isozaki P Siekmeier 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1989,9(8):161-168
An experiment was carried out to determine the characteristics of an operations system that can support fast cultivation of algae at high densities in the weightlessness of space. The experiment was conducted in glass bioreactor tanks, in which light was supplied by radiator rods connected to optical fiber cables. The illumination areas of the tanks were 2600 cm2, 6000 cm2, and 9200 cm2 per liter of solution. The characteristics of O2-CO2 gas exchange, concentration and separation of chlorella in the growth medium, dialysis of ionic salts in the growth medium, etc. were examined. Chloralla ellipsoidea was used in the experiment, yielding the following results: (1) By increasing the ratio of illumination area to volume, growth rates of up to approximately 0.6 g/L h could be obtained in a highly concentrated solution (one that contains 20 g/L or more of algae). (2) The most suitable proportions of carbon dioxide and oxygen gases for growing algae quickly at high concentrations were found to be 10% CO2 and 10% O2 (by volume). (3) There was a high optimum concentration for fast cultivation, and the data obtained resembled the theoretical curve postulated by P. Behrens et al. (4) It was possible to exchange carbon dioxide and oxygen using gas-permeable membrane modules. (5) It was possible to separate the chlorella from the growth medium and recycle the medium. 相似文献
108.
K Mori H Ohya K Matsumoto H Furune 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1987,7(4):47-52
The bioreactor with sunlight supply system and gas exchange systems presented here has proved feasible in ground tests and shows much promise for space use as a CELSS device. Our chief conclusions concerning the specification of total system needed for a life support system for a man in a space station are the following. (1) Sunlight supply system: compactness and low electrical consumption. (2) Bioreactor system: high density and growth rate of chlorella. (3) Gas exchange system: enough for O2 production and CO2 assimilation. 相似文献
109.
W. K. Hocking 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1990,10(12):153-161
Measurements of turbulent energy dissipation rates and eddy diffusion coefficients have been collated, and mean height profiles of fundamental turbulence parameters in the region 80–120 km are presented. 相似文献
110.
G Pugacheva A A Gusev U B Jayanthi N G Schuch W N Spjeldvik K T Choque 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2004,34(6):1433-1437
The existence of significant fluxes of antiparticles in the Earth magnetosphere has been predicted on theoretical considerations in this article. These antiparticles (positrons or antiprotons) at several hundred kilometers of altitudes, we believe are not of direct extraterrestrial origin, but are the natural products of nuclear reactions of the high energy primary cosmic rays (CR) and trapped protons (TP) confined in the terrestrial radiation belt, with the constituents of terrestrial atmosphere. Extraterrestrial positrons and antiprotons born in nuclear reactions of the same CR particles passing through only 5-7 g/cm2 of interstellar matter, exhibit lower fluxes compared to the antiprotons born at hundreds of g/cm2 in the atmosphere, which when confined in the magnetic field of the Earth (in any other planet), get accumulated. We present the results of the computations of the antiproton fluxes at 10 MeV to several GeV energies due to CR particle interactions with the matter in the interstellar space, and also with the residual atmosphere at altitudes of approximately 1000 km over the Earth's surface. The estimates show that the magnetospheric antiproton fluxes are greater by two orders of magnitude compared to the extraterrestrial fluxes measured at energies <1-2 GeV. 相似文献