首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6410篇
  免费   17篇
  国内免费   15篇
航空   3005篇
航天技术   2363篇
综合类   27篇
航天   1047篇
  2021年   60篇
  2019年   42篇
  2018年   138篇
  2017年   82篇
  2016年   93篇
  2015年   47篇
  2014年   162篇
  2013年   181篇
  2012年   184篇
  2011年   239篇
  2010年   170篇
  2009年   290篇
  2008年   387篇
  2007年   182篇
  2006年   153篇
  2005年   187篇
  2004年   155篇
  2003年   219篇
  2002年   132篇
  2001年   219篇
  2000年   112篇
  1999年   141篇
  1998年   175篇
  1997年   123篇
  1996年   140篇
  1995年   182篇
  1994年   187篇
  1993年   104篇
  1992年   148篇
  1991年   83篇
  1990年   64篇
  1989年   138篇
  1988年   62篇
  1987年   67篇
  1986年   61篇
  1985年   173篇
  1984年   144篇
  1983年   125篇
  1982年   146篇
  1981年   188篇
  1980年   65篇
  1979年   68篇
  1978年   53篇
  1977年   34篇
  1976年   39篇
  1975年   31篇
  1974年   34篇
  1973年   35篇
  1972年   37篇
  1970年   32篇
排序方式: 共有6442条查询结果,搜索用时 156 毫秒
761.
Summary The general features of the solar particle composition now seem to be clear. The two most abundant components, protons and helium nuclei, have different velocity spectra, similar, but not exactly identical rigidity spectra, and varying relative abundances. The multiply charged nuclei, on the other hand, appear to have the same spectral shape and relative abundances each time measurements are made, at least in the region from 42 to 135 MeV/nucleon. Further, these relative abundances seem to reflect those of the solar atmosphere insofar as comparison can be made. Electrons are rare, but high energy electrons are not expected to be plentiful due to the probable high rate of energy loss caused by synchrotron radiation at the sun. Energetic neutrons were also not expected in large quantity and have not been observed. Finally, there is positive evidence that very small quantities of deuterons exist, probably in an amount which is about 10-3 or less of the proton abundance.The experimental data indicate that the propagation phenomenon is not purely rigidity dependent. Although the propagation of solar particles is still not well understood, the development of theories which take into account both the general magnetic field and the inhomogeneities in the field seem to hold some promise of explaining the experimental results. The composition data have also established important restraints which any acceleration theory must satisfy, and thereby contributed greatly to the very difficult problem of determining the acceleration mechanism.The similarity of the relative abundance of the energetic solar particles and the nuclei in the sun's photosphere suggested the possibility of having a new means of estimating the solar neon and helium abundances. This very interesting possibility will have to be explored by further testing of the composition of future solar particle events. Finally, it was seen that the composition was a very strong argument against most stars being the principal source of high energy non-solar cosmic rays, and, therefore, special sources, such as supernovae or possibly quasistellar objects, should be considered as much more likely prospects for the origin of cosmic rays.The results which have been obtained thus far on the composition of solar cosmic rays have indicated that further research in this area of study should be very rewarding and of value to many fields of physics. Further data on the composition and relative, as well as absolute, energy spectra of the various components are needed throughout many events. More experiments also should be performed to determine the properties of the rare components, deuterons, tritons, He3 nuclei, electrons, neutrons, and the heavier nuclei. When these experiments are complete, the knowledge which is needed to aid in answering the solar and astrophysical problems discussed in this review should be at hand.  相似文献   
762.
The French earth observation satellite SPOT-2 has served as a testbed for precise orbit determination from DORIS doppler tracking in anticipation of the TOPEX/Poseidon mission. Using the most up-to-data gravity field model, JGM-2, a radial orbit accuracy of about 2–9 cm was achieved, with an rms of fit of the tracking data of about 0.64 mm/s. Furthermore, it was found that the coordinates of the ground stations can be determined with an accuracy of the order of 2–5 cm after removal of common rotations, and translations.

Using a slightly different model for atmospheric drag, but the same gravity model, precise orbits of TOPEX/Poseidon from DORIS tracking data were determined with a radial orbit accuracy of the order of 4–5 cm, which is far within the 13 cm mission requirement. This conclusion is based on the analysis of 1-day overlap of successive 11-day orbits, and the comparisons with orbits computed from satellite laser tracking (SLR) and from the combination of SLR and DORIS tracking. Results indicate a consistency between the different orbits of 1–4 cm, 4–20 cm, and 6–13 cm in the radial, cross-track, and along-track directions, respectively. The residual rms is about 4–5 cm for SLR data and 0.56 mm/s for DORIS tracking. These numbers are roughly twice as large as the system noise levels, reflecting the fact that there are still some modeling errors left.  相似文献   

763.
It is generally accepted that the energy that drives coronal mass ejections (CMEs) is magnetic in origin. Sheared and twisted coronal fields can store free magnetic energy which ultimately is released in the CME. We explore the possibility of the specific magnetic configuration of a magnetic flux rope of field lines that twist about an axial field line. The flux rope model predicts coronal observables, including heating along forward or inverse S-shaped, or sigmoid, topological surfaces. Therefore, studying the observed evolution of such sigmoids prior to, during, and after the CME gives us crucial insight into the physics of coronal storage and release of magnetic energy. In particular, we consider (1) soft-X-ray sigmoids, both transient and persistent; (2) The formation of a current sheet and cusp-shaped post-flare loops below the CME; (3) Reappearance of sigmoids after CMEs; (4) Partially erupting filaments; (5) Magnetic cloud observations of filament material.  相似文献   
764.
The fluence of high-LET particles (HLP) with LET infinity H2O greater than 15 keV micrometers-1 in selected organs and tissues were measured with plastic nuclear track detectors using a life-size human phantom on the 9th Shuttle-Mir Mission (STS-91). The planar-track fluence of HLP during the 9.8-day mission ranged from 1.9 x 10(3) n cm-2 (bladder) to 5.1 x 10(3) n cm-2 (brain) by a factor of 2.7. Based on these data, a probability of HLP hits to a matured cell of each organ or tissue was roughly estimated for a 90-day ISS mission. In the calculation, all cells were assumed to be spheres with a geometric cross-sectional area of 500 micrometers2 and the cell-hit frequency from isotropic space radiation can be described by the Poisson-distribution function. As results, the probability of one or more than 1 hit to a single cell by HLP for 90 days ranged from 17% to 38%; that of two or more than 2 hits was estimated to be 1.3-8.2%.  相似文献   
765.
The effect of high temperatures (35 and 45 degrees C) on microflora of the root zone of radish plants grown in phytotron was evaluated by the response of microorganisms from 9 indicator groups. Phytotron air temperature elevated to 35 degrees C for 20 hours caused no significant changes in qualitative and quantitative composition of the root microflora in experimental plants. By the end of the experiment, the species diversity of microflora had changed. The amount of phytopathogenic microorganisms decreased which can be interpreted as more stable co-existence of microflora with plants. The numbers of microbes from other indicator groups was in dynamic equilibrium. The plants' condition did not deteriorate either. Exposure to the temperature of 45 degrees C for 7 hours have been found to change the numbers and species diversity in the radish root zone microflora. The microorganisms were observed to increase their total numbers at the expense of certain indicator groups. Bacteria increased spore forms at the stage of spores. Colon bacillus bacteria of increased their numbers by the end of experiment by an order. By the end of experiment the roots of experiment plants had microscopic fungi from Mucor, Aspergillus, Trichoderma, Cladosporium genera. The observed changes in the microbial complex seem to be associated with the changes of root emissions and general deterioration of the plants' condition. It is suggested that the response of the microorganisms can be indicative of the condition of plants under investigation.  相似文献   
766.
The basic ideas to model the large solar flares are reviewed and illustrated. Some fundamental properties of potential and non-potential fields in the solar atmosphere are recalled. In particular, we consider a classification of the non-potential fields or, more exactly, related electric currents, including reconnecting current layers. The so-called ‘rainbow reconnection’ model is presented with its properties and predictions. This model allows us to understand main features of large flares in terms of reconnection. We assume that in the two-ribbon flares, like the Bastille-day flare, the magnetic separatrices are involved in a large-scale shear photospheric flow in the presence of reconnecting current layers generated by a converging flow.  相似文献   
767.
In CELSS (Controlled Ecological Life Support System), utilization of photosynthetic algae is an effective means for obtaining food and oxygen at the same time. We have chosen Spirulina, a blue-green alga, and have studied possibilities of algae utilization. We have developed an advanced algae cultivation system, which is able to produce algae continuously in a closed condition. Major features of the new system are as follows. (1) In order to maintain homogeneous culture conditions, the cultivator was designed so as to cause a swirl on medium circulation. (2) Oxygen gas separation and carbon dioxide supply are conducted by a newly designed membrane module. (3) Algae mass and medium are separated by a specially designed harvester. (4) Cultivation conditions, such as pH, temperature, algae growth rate, light intensity and quantity of generated oxygen gas are controlled by a computer system and the data are automatically recorded. This equipment is a primary model for ground experiments in order to obtain some design data for space use. A feasibility of algae cultivation in a closed condition is discussed on the basis of data obtained by use of this new system.  相似文献   
768.
Observations of the Galactic center region with the H.E.S.S. telescopes have established the existence of a steady, extended source of gamma-ray emission coinciding with the position of the super massive black hole Sgr A*. This is a remarkable finding given the expected presence of dense self-annihilating Dark Matter in the Galactic center region. The self-annihilation process is giving rise to gamma-ray production through hadronization including the production of neutral pions which decay into gamma-rays but also through (loop-suppressed) annihilation into final states of almost mono-energetic photons. We study the observed gamma-ray signal (spectrum and shape) from the Galactic center in the context of Dark Matter annihilation and indicate the prospects for further indirect Dark Matter searches with H.E.S.S.  相似文献   
769.
Improved spacecraft shield design requires early entry of radiation constraints into the design process to maximize performance and minimize costs. As a result, we have been investigating high-speed computational procedures to allow shield analysis from the preliminary design concepts to the final design. In particular, we will discuss the progress towards a full three-dimensional and computationally efficient deterministic code for which the current HZETRN evaluates the lowest-order asymptotic term. HZETRN is the first deterministic solution to the Boltzmann equation allowing field mapping within the International Space Station (ISS) in tens of minutes using standard finite element method (FEM) geometry common to engineering design practice enabling development of integrated multidisciplinary design optimization methods. A single ray trace in ISS FEM geometry requires 14 ms and severely limits application of Monte Carlo methods to such engineering models. A potential means of improving the Monte Carlo efficiency in coupling to spacecraft geometry is given in terms of re-configurable computing and could be utilized in the final design as verification of the deterministic method optimized design.  相似文献   
770.
The study of the electrical environment of the Earth's atmosphere has rapidly advanced during the past century. Great strides have been made towards the understanding of lightning and thunderstorms and in relating them to the global electric circuit. The electromagnetic fields and currents connect different parts of the Earth's environment, and any type of perturbation in one region affects another region. Starting from the traditional views in which the electrodynamics of one region has been studied in isolation from the neighboring regions, the modern theory of the global electrical circuit has been discussed briefly. Interconnection and electrodynamic coupling of various regions of the Earth's environment can be easily studied by using the global electric circuit model. Deficiencies in the model and the possibility of improvement in it have been suggested. Application of the global electric circuit model to the understanding of the Earth's changes of climate has been indicated.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号