首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2831篇
  免费   7篇
  国内免费   8篇
航空   1292篇
航天技术   1167篇
综合类   14篇
航天   373篇
  2021年   23篇
  2019年   27篇
  2018年   58篇
  2017年   26篇
  2016年   40篇
  2015年   12篇
  2014年   62篇
  2013年   77篇
  2012年   68篇
  2011年   92篇
  2010年   66篇
  2009年   119篇
  2008年   190篇
  2007年   83篇
  2006年   70篇
  2005年   68篇
  2004年   76篇
  2003年   93篇
  2002年   64篇
  2001年   87篇
  2000年   55篇
  1999年   60篇
  1998年   77篇
  1997年   52篇
  1996年   60篇
  1995年   85篇
  1994年   86篇
  1993年   51篇
  1992年   70篇
  1991年   36篇
  1990年   30篇
  1989年   68篇
  1988年   24篇
  1987年   30篇
  1986年   28篇
  1985年   102篇
  1984年   73篇
  1983年   66篇
  1982年   77篇
  1981年   88篇
  1980年   29篇
  1979年   39篇
  1978年   25篇
  1977年   17篇
  1976年   12篇
  1975年   11篇
  1974年   14篇
  1973年   15篇
  1972年   14篇
  1970年   12篇
排序方式: 共有2846条查询结果,搜索用时 15 毫秒
271.
Solar oscillations provide the most accurate measures of cycle dependent changes in the sun, and the Solar and Heliospheric Observatory/Michelson Doppler Imager (MDI) data are the most precise of all. They give us the opportunity to address the real challenge — connecting the MDI seismic measures to observed characteristics of the dynamic sun. From inversions of the evolving MDI data, one expects to determine the nature of the evolution, through the solar cycle, of the layers just beneath the sun's surface. Such inversions require one to guess the form of the causal perturbation — usually beginning with asking whether it is thermal or magnetic. Matters here are complicated because the inversion kernels for these two are quite similar, which means that we don't have much chance of disentangling them by inversion. However, since the perturbation lies very close to the solar surface, one can use synoptic data as an outer boundary condition to fix the choice. It turns out that magnetic and thermal synoptic signals are also quite similar. Thus, the most precise measure of the surface is required.

We argue that the most precise synoptic data come from the Big Bear Solar Observatory (BBSO) Solar Disk Photometer (SDP). A preliminary analysis of these data implies a magnetic origin of the cycle-dependent sub-surface perturbation. However, we still need to do a more careful removal of the facular signal to determine the true thermal signal.  相似文献   

272.
The contribution to total solar irradiance variations by the magnetic field at the solar surface is estimated. Detailed models of the irradiance changes on the basis of magnetograms show that magnetic features at the solar surface account for over 90% of the irradiance variations on a solar rotation time scale and at least 70% on a solar cycle time scale. If the correction to the VIRGO record proposed by Fröhlich & Finsterle (2001) is accepted, then magnetic features at the solar surface are responsible for over 90% of the solar cycle irradiance variations as well.  相似文献   
273.
Itapetinga measurements at 48 GHz with the multibeam technique are used to determine the relative position of solar burst centroid of emission with high spatial accuracy and time resolution. For the Great Bursts of October 19,22, 1989, with a large production of relativistic particles, and October 23, it is suggested that, at 48 GHz, the bursts might have originated in more then one source in space and time. Additionally the October 19 and 22 Ground Level Events exhibited very unusual intensity-time profiles including double component structures for the onset phase. The Bern observatory spectral radio emission data show a strong spectral flattening typical for large source inhomogeneties. The interpretation for this is that large solar flares are a superposition of a few strong bursts (separated both in space and time) in the same flaring region.  相似文献   
274.
Time period from October 1996 until January 1998 was checked on high energy resolution DOK2 energetic particle instrument measurements on Interball-1 and Interball-2 for the ion (> 20 keV) dispersive events (EDIS) with the exclusion of Interball-1 orbit parts in the tail. A variety of energy dispersive events, both in ion and electron spectra with different duration is found in the auroral regions, in the outer magnetosphere and near the cusp. While EDIS were observed in all sectors of MLT, the best conditions for their observation were in the afternoon local time. The characteristics of dispersive events observed by DOK2 are consistent with their explanation by the gradient-curvature drift of particles from the injection point(s) in the night local time sector given in Lutsenko at al., 2000a, b.  相似文献   
275.
Rayleigh optical depth is an integral part of many radiative transfer problems. This paper discusses different elements and approaches of its determination. Then, it presents a method, which ensures more realistic estimate of Rayleigh optical depth by using refractive index and depolarization factor (including rotational Raman lines) adjusted according to the state and composition of the atmosphere. It is based on the published experimental and theoretical results. The Rayleigh optical depth calculations are compared with the Elterman’s model calculations for trend analysis purpose. Rayleigh optical depths are found to be around 3.4% lower than previous researchers, as they ignored the constraints of conservation of angular momentum in the rotational/vibrational transitions of the molecules during scattering.  相似文献   
276.
中俄联合火星电离层星-星掩星探测   总被引:1,自引:0,他引:1  
中俄联合火星星-星掩星探测是人类首次在火星空间环境进行此类的联合试验。用于探测火星电离层的星-星掩星技术较以前星地间的探测技术相比,有可接收高信噪比信号,反演精度高,可探测火星上太阳天顶角大于43°,或者小于138°的区域电离层等优点。本文介绍了中俄联合火星星-星掩星探测方案、基本原理,给出了主要技术指标、地面模拟测试结果。  相似文献   
277.
We examined some 75 observations from the low-altitude Earth orbiting DMSP, Ørsted and CHAMP satellites which were taken in the region of the nominal cusp. Our objective was to determine whether the actually observed cusp locations as inferred from magnetosheath-like particle precipitation (“particle cusp”) and intense small-scale magnetic field variations (“current cusp”), respectively, were identical and were consistent with the statistically expected latitude of the cusp derived from a huge number of charged particle spectrograms (“statistical cusp”).  相似文献   
278.
Cometary dust trails were first observed by IRAS; they are widely known to be the origins of meteoric showers. A new window has been opened for the study of dust trails, using ground-based observations. We succeeded in obtaining direct images of the 22P/Kopff dust trail with the Kiso 1.05-m Schmidt telescope. Following this initial success, we have continued to perform a dust trail survey at Kiso. As a result of this survey, we have detected dust trails along the orbit of six periodic comets, between February 2002 and March 2004. The optical depth of these dust trails are 10−9 to 10−8, which is consistent with IRAS measurements. In this paper, we describe the observations and data reduction procedures, and report the brief result obtained between February 2002 and March 2004.  相似文献   
279.
280.
Monthly median values of foF2, hmF2 and M(3000)F2 parameters, with quarter-hourly time interval resolution for the diurnal variation, obtained with DPS4 digisonde at Hainan (19.5°N, 109.1°E; Geomagnetic coordinates: 178.95°E, 8.1°N) are used to investigate the low-latitude ionospheric variations and comparisons with the International Reference Ionosphere (IRI) model predictions. The data used for the present study covers the period from February 2002 to April 2007, which is characterized by a wide range of solar activity, ranging from high solar activity (2002) to low solar activity (2007). The results show that (1) Generally, IRI predictions follow well the diurnal and seasonal variation patterns of the experimental values of foF2, especially in the summer of 2002. However, there are systematic deviation between experimental values and IRI predictions with either CCIR or URSI coefficients. Generally IRI model greatly underestimate the values of foF2 from about noon to sunrise of next day, especially in the afternoon, and slightly overestimate them from sunrise to about noon. It seems that there are bigger deviations between IRI Model predictions and the experimental observations for the moderate solar activity. (2) Generally the IRI-predicted hmF2 values using CCIR M(3000)F2 option shows a poor agreement with the experimental results, but there is a relatively good agreement in summer at low solar activity. The deviation between the IRI-predicted hmF2 using CCIR M(3000)F2 and observed hmF2 is bigger from noon to sunset and around sunrise especially at high solar activity. The occurrence time of hmF2 peak (about 1200 LT) of the IRI model predictions is earlier than that of observations (around 1500 LT). The agreement between the IRI hmF2 obtained with the measured M(3000)F2 and the observed hmF2 is very good except that IRI overestimates slightly hmF2 in the daytime in summer at high solar activity and underestimates it in the nighttime with lower values near sunrise at low solar activity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号