首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7382篇
  免费   13篇
  国内免费   24篇
航空   3689篇
航天技术   2738篇
综合类   35篇
航天   957篇
  2021年   48篇
  2019年   53篇
  2018年   100篇
  2017年   47篇
  2016年   53篇
  2014年   131篇
  2013年   185篇
  2012年   154篇
  2011年   215篇
  2010年   162篇
  2009年   266篇
  2008年   357篇
  2007年   188篇
  2006年   188篇
  2005年   187篇
  2004年   159篇
  2003年   243篇
  2002年   147篇
  2001年   232篇
  2000年   145篇
  1999年   180篇
  1998年   207篇
  1997年   148篇
  1996年   206篇
  1995年   261篇
  1994年   235篇
  1993年   159篇
  1992年   175篇
  1991年   107篇
  1990年   86篇
  1989年   190篇
  1988年   79篇
  1987年   91篇
  1986年   85篇
  1985年   272篇
  1984年   204篇
  1983年   179篇
  1982年   199篇
  1981年   237篇
  1980年   83篇
  1979年   74篇
  1978年   66篇
  1977年   65篇
  1976年   47篇
  1975年   62篇
  1974年   49篇
  1973年   52篇
  1972年   64篇
  1971年   49篇
  1970年   54篇
排序方式: 共有7419条查询结果,搜索用时 78 毫秒
951.
This viewpoint argues that the barriers preventing human expansion into space are not scientific but political and legal - an inability to secure funding; artificially high costs created by punitive insurance premiums and excessive bureaucracy; and uncertainty and disagreement about the extent and implications of legal regulation of space activities. Construction on Earth of a ‘metanation’ to oversee the governance of outer space is advocated as a possible solution.  相似文献   
952.
The development of legume root nodules was studied as a model system for the examination of gravitational effects on plant root development. In order to examine whether rhizobial association with clover roots can be achieved in microgravity, experiments were performed aboard the KC-135 parabolic aircraft and aboard the sounding rocket mission Consort 3. Binding of rhizobia to roots and the initial stages of root nodule development successfully occurred in microgravity. Seedling germination experiments were performed in the sliding block device, the Materials Dispersion Apparatus, aboard STS-37. When significant hydration of the seeds was achieved, normal rates of germination and seedling development were observed.  相似文献   
953.
Comprehensive spectroscopic monitoring of plant health and growth in bioregenerative life support system environments is possible using a variety of spectrometric technologies. Absorption spectrometry and atomic emission spectrometry in combination allow for direct, on-line, reagentless monitoring of plant nutrients from nitrate and potassium to micronutrients such as copper and zinc. Fluorometric spectrometry is ideal for the on-line detection, identification and quantification of bacteria and fungi. Liquid Atomic Emission Spectrometry (LAES) is a new form of spectrometry that allows for direct measurement of atomic emission spectra in liquids. An electric arc is generated by a pair of electrodes in the liquid to provide the energy necessary to break molecular bonds and reduce the substance to atomic form. With a fiber probe attached to the electrodes, spectral light can be transmitted to a photodiode array spectrometer for light dispersion and analysis. Ultraviolet (UV) absorption spectrometry is a long-established technology, but applications typically have required specific reagents to produce an analyte-specific absorption. Nitrate and iron nutrients have native UV absorption spectra that have been used to accurately determine nutrient concentrations at the +/- 5% level. Fluorescence detection and characterization of microbes is based upon the native fluorescent signatures of most microbiological species. Spectral and time-resolved fluorometers operating with remote fiber-optic probes will be used for on-line microbial monitoring in plant nutrient streams.  相似文献   
954.
Growth of plants in a Controlled Ecological Life Support System (CELSS) may involve the use of hypobaric pressures enabling lower mass requirements for atmospheres and possible enhancement of crop productivity. A controlled environment plant growth chamber with hypobaric capability designed and built at Ames Research Center was used to determine if reduced pressures influence the rates of photosynthesis (Ps) and dark respiration (DR) of hydroponically grown lettuce plants. The chamber, referred to as a plant volatiles chamber (PVC), has a growing area of about 0.2 m2, a total gas volume of about 0.7 m3, and a leak rate at 50 kPa of <0.1%/day. When the pressure in the chamber was reduced from ambient to 51 kPa, the rate of net Ps increased by 25% and the rate of DR decreased by 40%. The rate of Ps increased linearly with decreasing pressure. There was a greater effect of reduced pressure at 41 Pa CO2 than at 81 Pa CO2. This is consistent with reports showing greater inhibition of photorespiration (Pr) in reduced O2 at low CO2 concentrations. When the partial pressure of O2 was held constant but the total pressure was varied between 51 and 101 kPa, the rate of CO2 uptake was nearly constant, suggesting that low pressure enhancement of Ps may be mainly attributable to lowered partial pressure of O2 and the accompanying reduction in Pr. The effects of lowered partial pressure of O2 on Ps and DR could result in substantial increases in the rates of biomass production, enabling rapid throughput of crops or allowing flexibility in the use of mass and energy resources for a CELSS.  相似文献   
955.
The general goal of the experiment was to study the response of anhydrobiotic (metabolically dormant) microorganisms (spores of Bacillus subtilis, cells of Deinococcus radiodurans, conidia of Aspergillus species) and cellular constituents (plasmid DNA, proteins, purple membranes, amino acids, urea) to the extremely dehydrating conditions of open space, in some cases in combination with irradiation by solar UV-light. Methods of investigation included viability tests, analysis of DNA damages (strand breaks, DNA-protein cross-links) and analysis of chemical effects by spectroscopic, electrophoretic and chromatographic methods. The decrease in viability of the microorganisms was as expected from simulation experiments in the laboratory. Accordingly, it could be correlated with the increase in DNA damages. The purple membranes, amino acids and urea were not measurably effected by the dehydrating condition of open space (in the dark). Plasmid DNA, however, suffered a significant amount of strand breaks under these conditions. The response of these biomolecules to high fluences of short wavelength solar UV-light is very complex. Only a brief survey can be given in this paper. The data on the relatively good survival of some of the microorganisms call for strict observance of COSPAR Planetary Protection Regulations during interplanetary space missions.  相似文献   
956.
If life were present on Mars to day, it would face potentially lethal environmental conditions such as a lack of water, frigid temperatures, ultraviolet radiation, and soil oxidants. In addition, the Viking missions did not detect near-surface organic carbon available for assimilation. Autotrophic organisms that lived under a protective layer of sand or gravel would be able to circumvent the ultraviolet radiation and lack of fixed carbon. Two terrestrial photosynthetic near-surface microbial communities have been identified, one in the inter- and supertidal of Laguna Ojo de Liebre (Baja California Sur, Mexico) and one in the acidic gravel near several small geysers in Yellowstone National Park (Wyoming, U.S.A.). Both communities have been studied with respect to their ability to fix carbon under different conditions, including elevated levels of inorganic carbon. Although these sand communities have not been exposed to the entire suite of Martian environmental conditions simultaneously, such communities can provide a useful model ecosystem for a potential extant Martian biota.  相似文献   
957.
An analysis of the relationship between a linear amplifier chain and an analog-to-digital converter (ADC) in a digital microwave receiver, with respect to sensitivity and dynamic range issues, is presented. The effects of gain, third-order intermodulation products and ADC characteristics on the performance of the receiver are illustrated and design criteria for the linear amplifier chain (given a specified ADC) are developed. A computer program is included which calculates theoretical receiver performance based on gain and third-order intermodulation product selections. Experimental results are also presented and compared with theoretical values  相似文献   
958.
Decision-aid systems, likely to appear in future aircraft generations, could play a central role in the cockpit thanks to the broad spectrum of functionalities and decision support facilities they will offer to the crew. As part of such systems, the exploratory FINDER mock-up is a knowledge-based system (KBS) designed to help crew members continually optimize their flight plan by suggesting solutions considering exhaustive information related to flight context, either on pilot request or upon external information occurrence. The successful evaluation by AIR FRANCE pilots of that first mock-up dedicated to diversion procedure on pilot request has led to the current development of an enhanced system with nominal Enroute operations and real-time capabilities. Nominal Enroute operations concern the optimization with respect to an evolutive constraining or favouring environment (due to weather, traffic or regulated areas, ETOPS constraints). This study paves the way for a future Flight Assistant System concept which is already under investigation and may take place in SEXTANT Avionique's future development steps  相似文献   
959.
This overview deals with very high impact velocities, where complete vaporization of an impacting cosmic dust particle is to be expected upon expansion from the high pressure high temperature state behind the stopping shock (v > 15 km/s). The topics discussed are the mechanics and thermodynamics of compression, adiabatic release, equation of state and nonequilibrium states upon expansion. The case of very high particle porosity (ρ 1 g/cm3) and the case of very small dust masses (m < 10−17 g) are discussed from what one presently knows. The possibility of three body collisions in the expanding gas phase is discussed briefly. The effect of oblique impact is discussed with respect to its relevance to the ionization process. The numbers communicated are up to the highest “experimental” impact velocities (80 km/s, Halley mission). As one goes to lower impact velocities (20 < v < 30 km/s) there is still complete vaporization of the dust particle but ionization out of the bulk of the particle becomes low. Other than thermal processes may become important. Ideas are outlined to understand their physical nature.  相似文献   
960.
Many challenges are presented by biological degradation in a bioregenerative Controlled Ecological Life Support System as envisioned by the U.S. National Aeronautics and Space Administration. In studies conducted with biodegradative microorganisms indigenous to sweetpotato fields, it was determined that a particle size of 75 microns and incubation temperature of 30°C were optimal for degradation. The composition of the biomass and characterization of plant nutrient solution indicated the presence of potential energy sources to drive microbial transformations of plant waste. Selected indigenous soil isolates with ligno-cellulolytic or sulfate-reducing ability were utilized in biological studies and demonstrated diversity in their ability to reduce sulfate in solution and to utilize alternative carbon sources: a lignin analog 4-hydroxy, 3-methoxy cinnamic acid, cellulose, arabinose, glucose, sucrose, mannitol, galactose, ascorbic acid.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号