首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2839篇
  免费   7篇
  国内免费   8篇
航空   1295篇
航天技术   1171篇
综合类   14篇
航天   374篇
  2021年   23篇
  2019年   28篇
  2018年   58篇
  2017年   26篇
  2016年   40篇
  2015年   12篇
  2014年   62篇
  2013年   79篇
  2012年   68篇
  2011年   92篇
  2010年   66篇
  2009年   119篇
  2008年   190篇
  2007年   83篇
  2006年   70篇
  2005年   68篇
  2004年   76篇
  2003年   93篇
  2002年   64篇
  2001年   87篇
  2000年   55篇
  1999年   60篇
  1998年   77篇
  1997年   52篇
  1996年   60篇
  1995年   85篇
  1994年   86篇
  1993年   51篇
  1992年   70篇
  1991年   36篇
  1990年   30篇
  1989年   69篇
  1988年   24篇
  1987年   31篇
  1986年   29篇
  1985年   102篇
  1984年   74篇
  1983年   66篇
  1982年   77篇
  1981年   88篇
  1980年   29篇
  1979年   39篇
  1978年   26篇
  1977年   17篇
  1976年   12篇
  1975年   11篇
  1974年   14篇
  1973年   15篇
  1972年   14篇
  1970年   12篇
排序方式: 共有2854条查询结果,搜索用时 281 毫秒
991.
992.
For spacecraft without on-board navigation capability, their ability to fly close to target comets is limited primarily by the comet's ephemeris uncertainty. Factors contributing to cometary ephemeris uncertainties include measurement errors, star catalog errors, and offsets between the comet's center of mass and its observed center of light. The situation is further complicated by nongravitational forces acting upon a comet's nucleus and the paucity of observers currently making astrometric observations of comets. For comet Halley, the nongravitational forces affecting this comet's motion are consistent with the rocket effect of an outgassing water ice nucleus; the nucleus is apparently rotating in a direct sense about a stable spin axis. Accurate comet Halley ephemerides for close spacecraft flybys will require continued efforts to refine the existing nongravitational force model. In addition, the various flyby missions to comet Halley will require a well organized network of astrometric observers. These observers must rapidly reduce their observations in early 1986, thus allowing continuous updates to the comet's ephemeris just prior to the spacecraft flybys in March 1986.  相似文献   
993.
Breus  T. K.  Verigin  M. I.  Kotova  G. A.  Slavin  J. A. 《Cosmic Research》2021,59(6):478-492
Cosmic Research - On January 21, 1972, the Mars 3 satellite recorded a strong (~27 nT) regular magnetic field in the region of the spacecraft’s closest approach to the dayside of Mars. Many...  相似文献   
994.
995.
Sustainability is one of the most important criteria in the creation and evaluation of human life support systems intended for use during long space flights. The common feature of biological and physicochemical life support systems is that basically they are both catalytic. But there are two fundamental properties distinguishing biological systems: 1) they are auto-catalytic: their catalysts--enzymes of protein nature--are continuously reproduced when the system functions; 2) the program of every process performed by enzymes and the program of their reproduction are inherent in the biological system itself--in the totality of genomes of the species involved in the functioning of the ecosystem. Actually, one cell with the genome capable of the phenotypic realization is enough for the self-restoration of the function performed by the cells of this species in the ecosystem. The continuous microalgal culture of Chlorella vulgaris was taken to investigate quantitatively the process of self-restoration in unicellular algae population. Based on the data obtained, we proposed a mathematical model of the restoration process in a cell population that has suffered an acute radiation damage.  相似文献   
996.
Satellite remote sensing technology has contributed to the transformation of multiple earth science domains, putting space observations at the forefront of innovation in earth science. With new satellite missions being launched every year, new types of earth science data are being incorporated into science models and decision-making systems in a broad array of organizations. Policy guidance can influence the degree to which user needs influence mission design and when, and ensure that satellite missions serve both the scientific and user communities without becoming unfocused and overly expensive. By considering the needs of the user community early on in the mission-design process, agencies can ensure that satellites meet the needs of multiple constituencies. This paper describes the mission development process in NASA and ESA and compares and contrasts the successes and challenges faced by these agencies as they try to balance science and applications within their missions.  相似文献   
997.
On the basis of numerical experiments the theoretical possibility of long-time (longer than 1 month) and superlong-time (longer than 1 year) existence in orbit of technogenic microparticles (MPs) with radii of a few hundredths of a micrometer is demonstrated. MPs are injected into the near-Earth space (NES) in elongated elliptical low-perigee orbits with parameters, corresponding to Molniya satellite’s orbital parameters. Calculations were carried out taking into account disturbing effects on the MP orbital motion in NES of the following factors: the gravitational disturbance caused by polar oblateness of the Earth, the solar pressure force (calculated with using the techniques of the Mie theory), the drag force of a neutral component of background gas, as well as the electrodynamic forces caused by interaction of electric charge, induced on MPs, with the magnetic and electric fields of the NES.  相似文献   
998.
The HOPE mass spectrometer of the Radiation Belt Storm Probes (RBSP) mission (renamed the Van Allen Probes) is designed to measure the in situ plasma ion and electron fluxes over 4π sr at each RBSP spacecraft within the terrestrial radiation belts. The scientific goal is to understand the underlying physical processes that govern the radiation belt structure and dynamics. Spectral measurements for both ions and electrons are acquired over 1 eV to 50 keV in 36 log-spaced steps at an energy resolution ΔE FWHM/E≈15 %. The dominant ion species (H+, He+, and O+) of the magnetosphere are identified using foil-based time-of-flight (TOF) mass spectrometry with channel electron multiplier (CEM) detectors. Angular measurements are derived using five polar pixels coplanar with the spacecraft spin axis, and up to 16 azimuthal bins are acquired for each polar pixel over time as the spacecraft spins. Ion and electron measurements are acquired on alternate spacecraft spins. HOPE incorporates several new methods to minimize and monitor the background induced by penetrating particles in the harsh environment of the radiation belts. The absolute efficiencies of detection are continuously monitored, enabling precise, quantitative measurements of electron and ion fluxes and ion species abundances throughout the mission. We describe the engineering approaches for plasma measurements in the radiation belts and present summaries of HOPE measurement strategy and performance.  相似文献   
999.
A miniaturized in situ laser induced breakdown spectroscope-LIBS is one of the two lunar rover payloads to be flown in India’s next lunar mission Chandrayaan-2, with an objective to carry-out a precise qualitative and quantitative elemental analyses of lunar regolith at the proximity of the landing region. As per the imposed mission constraints and the executed design optimization studies, a compact and light-weight LIBS prototype model is developed at our premises. This paper mainly concerns with the estimation of theoretical aspects; especially on evaluation of elemental ablation parameters and signal-to-noise ratio (SNR) calculations for the designed instrument. Theoretical estimations and simulations yielded an incident laser power density of the order of 5 × 1010 W/cm2 on the target surface at a defined lens-to-surface distance (LTSD) of 200 mm and revealed an SNR > 100 for most of the elements under consideration. This paper also addresses the impact of LTSD variation on detection capability. The estimation of plasma-temperatures was carried out utilizing the emission spectra obtained under high vacuum environments employing the LIBS laboratory model. Experimental investigations and the performed theoretical estimations asserted the successful operation of the configured LIBS instrument for in situ elemental analyses on lunar surface.  相似文献   
1000.
The MICROSCOPE space mission aims to test the Equivalence Principle with an accuracy of 10-1510-15. The drag-free micro-satellite will orbit around the Earth and embark a differential electrostatic accelerometer including two cylindrical test masses submitted to the same gravitational field and made of different materials. The experience consists in testing the equality of the electrostatic acceleration applied to the masses to maintain them relatively motionless. The accuracy of the measurements exploited for the test of the Equivalence Principle is limited by our a priori knowledge of several physical parameters of the instrument. These parameters are partially estimated on-ground, but with an insufficient accuracy, and an in-orbit calibration is therefore required to correct the measurements. The calibration procedures have been defined and their analytical performances have been evaluated. In addition, a simulator software including the dynamics model of the instrument, the satellite drag-free system and the perturbing environment has been developed to numerically validate the analytical results. After an overall presentation of the MICROSCOPE mission, this paper will describe the calibration procedures and focus on the simulator. Such an in-flight calibration is mandatory for similar space missions taking advantage of a drag-free system.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号