全文获取类型
收费全文 | 2994篇 |
免费 | 7篇 |
国内免费 | 8篇 |
专业分类
航空 | 1398篇 |
航天技术 | 1199篇 |
综合类 | 14篇 |
航天 | 398篇 |
出版年
2021年 | 27篇 |
2019年 | 31篇 |
2018年 | 68篇 |
2017年 | 30篇 |
2016年 | 41篇 |
2015年 | 17篇 |
2014年 | 63篇 |
2013年 | 87篇 |
2012年 | 72篇 |
2011年 | 97篇 |
2010年 | 67篇 |
2009年 | 128篇 |
2008年 | 198篇 |
2007年 | 90篇 |
2006年 | 84篇 |
2005年 | 74篇 |
2004年 | 77篇 |
2003年 | 94篇 |
2002年 | 66篇 |
2001年 | 93篇 |
2000年 | 60篇 |
1999年 | 62篇 |
1998年 | 78篇 |
1997年 | 55篇 |
1996年 | 65篇 |
1995年 | 87篇 |
1994年 | 89篇 |
1993年 | 51篇 |
1992年 | 70篇 |
1991年 | 39篇 |
1990年 | 31篇 |
1989年 | 69篇 |
1988年 | 24篇 |
1987年 | 30篇 |
1986年 | 28篇 |
1985年 | 104篇 |
1984年 | 81篇 |
1983年 | 72篇 |
1982年 | 81篇 |
1981年 | 96篇 |
1980年 | 29篇 |
1979年 | 39篇 |
1978年 | 25篇 |
1977年 | 17篇 |
1976年 | 12篇 |
1975年 | 12篇 |
1974年 | 14篇 |
1973年 | 15篇 |
1972年 | 14篇 |
1970年 | 13篇 |
排序方式: 共有3009条查询结果,搜索用时 17 毫秒
71.
G V Dalrymple P K Leichner K A Harrison A B Cox K A Hardy Y L Salmon J C Mitchell 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1994,14(10):267-270
Protons of a specific energy, 55 MeV, have been found to induce primary high grade astrocytomas (HGA) in the Rhesus monkey (Macaca mulatta). Brain tumors of this type were not induced by protons of other energies (32-2,300 MeV). Induction of HGA has been identified in human patients who have had radiation therapy to the head. We believe that the induction of HGA in the monkey is a consequence of dose distribution, not some unique "toxic" property of protons. Comparison of the human experience with the monkey data indicates the RBE for induction of brain tumors to be about one. It is unlikely that protons cause an unusual change in oncogenic expression, as compared to conventional electromagnetic radiation. 相似文献
72.
R. Schmidt H. Arends W. Riedler K. Torkar F. Rüdenauer M. Fehringer B. Maehlum B. Narheim 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1992,12(12):61-64
Future space missions aiming at the accurate measurement of cold plasmas and DC to very low frequency electric fields will require that the potential of their conductive surfaces be actively controlled to be near the ambient plasma potential. In the near-Earth space these spacecraft are usually solar-cell powered; consequently, parts of their surface are most of the time exposed to solar photons. Outside the plasmasphere, a positive surface potential due the dominance of surface-emitted photoelectrons over ambient plasma electrons is to be expected. Photo- and ambient electrons largely determine the potential and positive values between a few Volts up to 100 V have been observed. Active ion emission is the obvious solution of this problem. A liquid metal ion emitter and a saddle field ion emitter are nearing the stage of flight unit fabrication. We will attempt to clamp the spacecraft potential to values close to the plasma potential. We present first results from vacuum chamber tests and describe the emission behaviour and characteristics of emitters producing, respectively, In+ and N2+ beams with an energy of ≥ 5 keV. 相似文献
73.
H. Fuke Y. Tasaki K. Abe S. Haino Y. Makida S. Matsuda J.W. Mitchell A.A. Moiseev J. Nishimura M. Nozaki S. Orito J.F. Ormes M. Sasaki E.S. Seo Y. Shikaze R.E. Streitmatter J. Suzuki K. Tanaka T. Yamagami A. Yamamoto T. Yoshida K. Yoshimura 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2008,41(12):2050-2055
74.
Prateek R. Srivastava Sneha A. Gokani Ajeet K. Maurya Rajesh Singh Sushil Kumar B. Veenadhari R. Selvakumaran Abhay K. Singh Devendraa Siingh Janos Lichtenberger 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2013
One-to-one relation with its causative lightning discharges and propagation features of night-time whistlers recorded at low-latitude station, Allahabad (geomag. lat. 16.05°N, L = 1.08), India, from continuous observations made during 1–7 April, 2011 have been studied. The whistler observations were made using the Automatic Whistler Detector (AWD) system and AWESOME VLF receiver. The causative lightning strikes of whistlers were checked in data provided by World-Wide Lightning Location Network (WWLLN). A total of 32 whistlers were observed out of which 23 were correlated with their causative lightnings in and around the conjugate location (geom. lat. 9.87°S) of Allahabad. A multi-flash whistler is also observed on 1 April with dispersions 15.3, 17.5 and 13.6 s1/2. About 70% (23 out of 32) whistlers were correlated with the WWLLN detected causative lightnings in the conjugate region which supports the ducted mode of propagation at low latitude. The multi-flash and short whistlers also propagated most likely in the ducted mode to this station. 相似文献
75.
A.K. Sharma D.P. Nade S.S. Nikte P.T. Patil R.N. Ghodpage R.S. Vhatkar M.V. Rokade S. Gurubaran 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2014
This paper reports the nightglow observations of OI 630.0 nm emissions, made by using all sky imager operating at low latitude station Kolhapur (16.8°N, 74.2°E and dip lat. 10.6°N) during high sunspot number years of 24th solar cycle. The images are analyzed to study the nocturnal, seasonal and solar activity dependence occurrence of plasma bubbles. We observed EPBs in images regularly during a limited period 19:30 to 02:30 LT and reach maximum probability of occurrence at 22:30 LT. The observation pattern of EPBs shows nearly no occurrence during the month of May and it maximizes during the period October–April. The equinox and solstice seasonal variations in the occurrence of plasma bubbles show nearly equal and large differences, respectively, between years of 2010–11 and 2011–12. 相似文献
76.
Wang Xiaoying Dai Ziqiang Zhang Enhong K.E. Fuyang Cao Yunchang Song Lianchun 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2014
Algebraic reconstruction techniques (ART) have been successfully used to reconstruct the total electron content (TEC) of the ionosphere and in recent years be tentatively used in tropospheric wet refractivity and water vapor tomography in the ground-based GNSS technology. The previous research on ART used in tropospheric water vapor tomography focused on the convergence and relaxation parameters for various algebraic reconstruction techniques and rarely discussed the impact of Gaussian constraints and initial field on the iteration results. The existing accuracy evaluation parameters calculated from slant wet delay can only evaluate the resultant precision of the voxels penetrated by slant paths and cannot evaluate that of the voxels not penetrated by any slant path. The paper proposes two new statistical parameters Bias and RMS, calculated from wet refractivity of the total voxels, to improve the deficiencies of existing evaluation parameters and then discusses the effect of the Gaussian constraints and initial field on the convergence and tomography results in multiplicative algebraic reconstruction technique (MART) to reconstruct the 4D tropospheric wet refractivity field using simulation method. 相似文献
77.
Shivalika Sarkar A.K. Gwal 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2014
First comparison of in situ density fluctuations measured by the DEMETER satellite with ground based GPS receiver measurements at the equatorial anomaly station Bhopal (geographic coordinates (23.2°N, 77.6°E); geomagnetic coordinates (14.29°N, 151.12°E)) for the low solar activity year 2005, are presented in this paper. Calculation of the diurnal maximum of the strength of the equatorial electrojet, which can serve as precursor to ionospheric scintillations in the anomaly region is also done. The Langmuir Probe experiment and Plasma Analyzer onboard DEMETER measure the electron and ion densities respectively. Irregularities in electron density distribution cause scintillations on transionospheric links and there exists a close relationship between an irregularity and scintillation. In 40% of the cases, DEMETER detects the irregularity structures (dNe/Ne ? 5% and dNi/Ni (O+) ? 5%) and GPS L band scintillations (S4 ? 0.2) are also observed around the same time, for the low solar activity period. It is found that maximum irregularity intensity is obtained in the geomagnetic latitude range of 10–20° for both electron density and ion density. As the GPS signals pass through this irregularity structure, scintillations are recorded by the GPS receiver installed at the equatorial anomaly station, Bhopal it is interesting to note that in situ density fluctuations observed on magnetic flux tubes that pass over Bhopal can be used as indicator of ionospheric scintillations at that site. Many cases of density fluctuations and associated scintillations have been observed during the descending low solar activity period. The percentage occurrence of density irregularities and scintillations shows good correspondence with diurnal maximum of the strength of electrojet, however this varies with different seasons with maximum correspondence in summer (up to 66%) followed by equinox (up to 50%) and winter (up to 46%). Also, there is a threshold value of EEJ strength to produce density irregularities ((dNe/Ne)max ? 5%) and for moderate to strong scintillations (S4 ? 0.3) to occur. For winter this value is found to be ∼40 nT whereas for equinox and summer it is around 50 nT. 相似文献
78.
K.-L. Klein S. Krucker G. Trottet 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2003,32(12):2521-2526
Initial results of a combined study of electron events using the 3DP experiment on the WIND spacecraftand the Nançay Radioheliograph (NRH) are presented. A total of 57 electron events whose solar release time could be inferred from WIND/3DP observations occurred during NRH observing times. In 40 of them a distinct signature was detected in maps at decimetric and metric wavelengths (dm-m-λ) taken by the NRH. These events are equally distributed among two categories: (1) Electron release together with dm-m-λ bursts of a few minutes duration: these events are also accompanied by decametric-hectometric type III bursts seen by WAVES/WIND. They correspond to the well-known impulsive electron events. (2) Electron release during long duration (several tens of minutes) dm-m-λ emission: the electrons are most often released more than ten minutes after the start of the radio event. In the majority of cases the dm-m-λ radio source changes position, size, and/or intensity near the time of electron release. 相似文献
79.
D.K. Haggerty E.C. Roelof G.M. Simnett 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2003,32(12):2673-2678
Processes in the solar corona are prodigious accelerators of energetic ions, and electrons. The angular distribution, composition, and spectra of energetic particles observed near Earth gives information on the acceleration mechanisms. A class of energetic particle observations particularly useful in understanding the solar acceleration is the near-relativistic impulsive beam-like electron events. During five years of operation the Advanced Composition Explorer (ACE) has measured well over 400 electron events. Approximately 25% of these electron events are impulsive beam-like events that are released onto interplanetary field lines predominantly from western solar longitudes. We extend our initial 3 year study during the rise to solar maximum (Haggerty and Roelof, 2002; Simnett et al., 2002) to a five year statistical analysis of these beam-like energetic electron events in relationship to optical flares, microwave emission, soft X-ray emission, metric and decametric type-III radio bursts, and coronal mass ejections. 相似文献
80.
K O'Brien H H Sauer 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2003,32(1):73-80
High-energy solar particles, produced in association with solar flares and coronal mass ejections, occasionally bombard the earth's atmosphere. resulting in radiation intensities additional to the background cosmic radiation. Access of these particles to the earth's vicinity during times of geomagnetic disturbances are not adequately described by using static geomagnetic field models. These solar fluxes are also often distributed non uniformly in space, so that fluxes measured by satellites obtained at great distances from the earth and which sample large volumes of space around the earth cannot be used to predict fluxes locally at the earth's surface. We present here a method which uses the ground-level neutron monitor counting rates as adjoint sources of the flux in the atmosphere immediately above them to obtain solar-particle effective dose rates as a function of position over the earth's surface. We have applied this approach to the large September 29-30, 1989 ground-level event (designated GLE 42) to obtain the magnitude and distribution of the solar-particle effective dose rate from an atypically large event. The results of these calculations clearly show the effect of the softer particle spectra associated with solar particle events, as compared with galactic cosmic rays, results in a greater sensitivity to the geomagnetic field, and, unlike cosmic rays, the near-absence of a "knee" near 60 degrees geomagnetic latitude. 相似文献