首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2662篇
  免费   5篇
  国内免费   5篇
航空   1387篇
航天技术   897篇
综合类   16篇
航天   372篇
  2018年   33篇
  2017年   24篇
  2014年   32篇
  2013年   62篇
  2012年   37篇
  2011年   86篇
  2010年   61篇
  2009年   90篇
  2008年   139篇
  2007年   55篇
  2006年   51篇
  2005年   54篇
  2004年   76篇
  2003年   89篇
  2002年   46篇
  2001年   61篇
  2000年   65篇
  1999年   35篇
  1998年   85篇
  1997年   59篇
  1996年   70篇
  1995年   72篇
  1994年   92篇
  1993年   54篇
  1992年   70篇
  1991年   33篇
  1990年   34篇
  1989年   77篇
  1988年   29篇
  1987年   34篇
  1986年   58篇
  1985年   103篇
  1984年   56篇
  1983年   62篇
  1982年   59篇
  1981年   74篇
  1980年   38篇
  1979年   29篇
  1978年   28篇
  1977年   25篇
  1975年   25篇
  1974年   27篇
  1973年   29篇
  1972年   23篇
  1971年   32篇
  1970年   18篇
  1969年   25篇
  1968年   23篇
  1967年   26篇
  1966年   23篇
排序方式: 共有2672条查询结果,搜索用时 31 毫秒
51.
In the 36 years between June 1965 and February 2001, the US human space flight program has conducted 100 spacewalks, or extravehicular activities (EVAs), as NASA officially calls them. EVA occurs when astronauts wearing spacesuits travel outside their protective spacecraft to perform tasks in the space vacuum environment. US EVA started with pioneering feasibility tests during the Gemini Program. The Apollo Program required sending astronauts to the moon and performing EVA to explore the lunar surface. EVA supported scientific mission objectives of the Skylab program, but may be best remembered for repairing launch damage to the vehicle and thus saving the program. EVA capability on Shuttle was initially planned to be a kit that could be flown at will, and was primarily intended for coping with vehicle return emergencies. The Skylab emergency and the pivotal role of EVA in salvaging that program quickly promoted Shuttle EVA to an essential element for achieving mission objectives, including retrieving satellites and developing techniques to assemble and maintain the International Space Station (ISS). Now, EVA is supporting assembly of ISS. This paper highlights development of US EVA capability within the context of the overarching mission objectives of the US human space flight program.  相似文献   
52.
The primary objective of the Laser Interferometer Space Antenna (LISA) mission is to detect and observe gravitational waves from massive black holes and galactic binaries in the frequency range 10−4 to 10−1 Hz. This low-frequency range is inaccessible to ground-based interferometers because of the unshieldable background of local gravitational noise and because ground-based interferometers are limited in length to a few km. LISA is an ESA cornerstone mission and recently had a system study (Ref. 1) carried out by a consortium led by Astrium, which confirmed the basic configuration for the payload with only minor changes, and provided detailed concepts for the spacecraft and mission design. The study confirmed the need for a drag-free technology demonstration mission to develop the inertial sensors for LISA, before embarking on the build of the flight sensors. With a technology demonstration flight in 2005, it would be possible to carry out LISA as a joint ESA-NASA mission with a launch by 2010 subject to the funding programmatics. The baseline for LISA is three disc-like spacecraft each of which consist of a science module which carries the laser interferometer payload (two in each science module) and a propulsion module containing an ion drive and the hydrazine thrusters of the AOCS. The propulsion module is used for the transfer from earth escape trajectory provided by the Delta II launch to the operational orbit. Once there the propulsion module is jettisoned to reduce disturbances on the payload. Detailed analysis of thermal and gravitational disturbances, a model of the drag-free control and of the interferometer operation confirm that the strain sensitivity of the interferometer will be achieved.  相似文献   
53.
Computer graphics is being employed at the NASA Johnson Space Center as a tool to perform rapid, efficient and economical analyses for man-machine integration, flight operations development and systems engineering. The Operator Station Design System (OSDS), a computer-based facility featuring a highly flexible and versatile interactive software package, PLAID, is described. This unique evaluation tool, with its expanding data base of Space Shuttle elements, various payloads, experiments, crew equipment and man models, supports a multitude of technical evaluations, including spacecraft and workstation layout, definition of astronaut visual access, flight techniques development, cargo integration and crew training. As OSDS is being applied to the Space Shuttle, Orbiter payloads (including the European Space Agency's Spacelab) and future space vehicles and stations, astronaut and systems safety are being enhanced. Typical OSDS examples are presented. By performing physical and operational evaluations during early conceptual phases. supporting systems verification for flight readiness, and applying its capabilities to real-time mission support, the OSDS provides the wherewithal to satisfy a growing need of the current and future space programs for efficient, economical analyses.  相似文献   
54.
Mendell WW 《Acta Astronautica》2005,57(2-8):676-683
The Vision for Space Exploration invokes activities on the Moon in preparation for exploration of Mars and also directs International Space Station (ISS) research toward the same goal. Lunar missions will emphasize development of capability and concomitant reduction of risk for future exploration of Mars. Earlier papers identified three critical issues related to the so-called NASA Mars Design Reference Mission (MDRM) to be addressed in the lunar context: (a) safety, health, and performance of the human crew; (b) various modalities of mission operations ranging surface activities to logistics, planning, and navigation; and (c) reliability and maintainability of systems in the planetary environment. In simple terms, lunar expeditions build a résumé that demonstrates the ability to design, construct, and operate an enterprise such as the MDRM with an expectation of mission success. We can evolve from Apollo-like missions to ones that resemble the complexity and duration of the MDRM. Investment in lunar resource utilization technologies falls naturally into the Vision. NASA must construct an exit strategy from the Moon in the third decade. With a mandate for continuing exploration, it cannot assume responsibility for long-term operation of lunar assets. Therefore, NASA must enter into a partnership with some other entity--governmental, international, or commercial--that can responsibly carry on lunar development past the exploration phase.  相似文献   
55.
Blood pressure at 30-sec intervals, heart rate, and percentage increase in leg volume continuously were recorded during a 25-min protocol in the M092 Inflight Lower Body Negative Pressure (LBNP) experiment carried out in the first manned Skylab mission. These data were collected during six tests on each crewman over a 5-month preflight period. The protocol consisted of a 5-min resting control period, 1 min at -8, 1 min at -16, 3 min at -30, 5 min at -40, and 5 min at -50 mm Hg LBNP. A 5-min recovery period followed. Inflight tests were performed at approximately 3-day intervals through the 28-day mission. Individual variations in cardiovascular responses to LBNP during the preflight period continued to be demonstrated in the inflight tests. Measurements of the calf indicated that a large volume of fluid was shifted out of the legs early in the flight and that a slower decrease in leg volume, presumably due to loss of muscle tissue, continued throughout the flight. Resting heart rates tended to be low early in the flight and to increase slightly as the flight progressed. Resting blood pressure varied but usually was characterized by slightly elevated systolic blood pressure, lower diastolic pressure, and higher pulse pressures than during preflight examinations. During LBNP inflight a much greater increase in leg volume occurred than in preflight tests. Large increases occurred even at the smallest levels of negative pressure, suggesting that the veins of the legs were relatively empty at the beginning of the LBNP. The greater volume of blood pooled in the legs was associated with greater increases of heart rate and diastolic pressure and larger falls of systolic and pulse pressure than seen in preflight tests. The LBNP protocol represented a greater stress inflight, and on three occasions it was necessary to stop the test early because of impending syncopal reactions. LBNP responses inflight appeared to predict the degree of postflight orthostatic intolerance. Postflight responses to LBNP during the first 48 hours were characterized by marked elevations of heart rate and instability of blood pressure. In addition, systolic and diastolic pressures were typically elevated considerably both at rest and also during stress. The time required for cardiovascular responses to return to preflight levels was much slower than in the case of Apollo crewmen.  相似文献   
56.
Africano  John  Schildknecht  Thomas  Matney  Mark  Kervin  Paul  Stansbery  Eugene  Flury  Walter 《Space Debris》2000,2(4):357-369
Since more than 10 years there is evidence that small-size space debris is accumulating in the geosynchronous orbit (GEO), probably as the result of breakups. Two break-ups have been reported in GEO. The 1978 break-up of an EKRAN 2 satellite, SSN 10365, was identified in 1992, and in 1992 a Titan 3C Transtage, SSN 3432, break-up produced at least twenty observable pieces. Subsequently several nations performed optical surveys of the GEO region in the form of independent observation campaigns. Such surveys suffer from the fact that the field of view of optical telescopes is small compared with the total area covered by the GEO ring. As a consequence only a small volume of the orbital element-magnitude-space is covered by each individual survey. Results from these surveys are thus affected by observational biases and therefore difficult to compare. This paper describes the development of a common search strategy to overcome these limitations. The strategy optimizes the sampling for objects in orbits similar to the orbits of the known GEO population but does not exclude the detection of objects with other orbital planes. A properly designed common search strategy clearly eases the comparison of results from different groups and the extrapolation from the sparse (biased) samples to the entire GEO environment.  相似文献   
57.
To meet the significant increase in EVA demand to support assembly and operations of the International Space Station (ISS), NASA and industry have improved the current Shuttle Extravehicular Mobility Unit (EMU), or "space suit", configuration to meet the unique and specific requirements of an orbital-based system. The current Shuttle EMU was designed to be maintained and serviced on the ground between frequent Shuttle flights. ISS will require the EMUs to meet increased EVAs out of the Shuttle Orbiter and to remain on orbit for up to 180 days without need for regular return to Earth for scheduled maintenance or refurbishment. Ongoing Shuttle EMU improvements have increased reliability, operational life and performance while minimizing ground and on-orbit maintenance cost and expendable inventory. Modifications to both the anthropomorphic mobility elements of the Space Suit Assembly (SSA) as well as to the Primary Life Support System (PLSS) are identified and discussed. This paper also addresses the status of on-going Shuttle EMU improvements and summarizes the approach for increasing interoperability of the U.S. and Russian space suits to be utilized aboard the ISS.  相似文献   
58.
The National Space Research Institute (INPE) is developing the first Brazilian Scientific Microsatellite (SACI-1) based on the vanguard technology and on the experience acquired through projects developed by Brazilian Space Program. The SACI-1 is a 750km polar orbit satellite. The spacecraft will combine spin stabilization with geomagnetic control and has a total mass of 60 kg. The overall dimensions are 640×470×470 mm. The SACI-1 satellite shall be launched together with CBERS (China-Brazil Earth Resource Satellite). Its platform is being designed for multiple mission applications. The Brazilian Academy of Sciences has selected four scientific payloads that characterize the mission. The scientific experiments are: ORCAS (Solar and Anomalous Cosmic Rays Observation in the Magnetosphere), PLASMEX (Study of Plasma Bubbles), FOTSAT (Airglow Photometer), and MAGNEX (Geomagnetic Experiment).  相似文献   
59.
The global network of meteorological satellites used different forms of international cooperation during its development, and some of these forms continue. Concern about continued operation of the global network led the WMO to study the issues and to adopt a long-term policy and strategy based on a shared meteorological satellite network. Nations need to consider how to combine their meteorological and space-related organizations in a partnership role, so they can directly contribute to a future global network of meteorological satellites. Some examples are cited to demonstrate that increased direct participation is a valid and feasible objective.  相似文献   
60.
Human interest in spaceflight is ancient. It is therefore ironic that, at a time when humans finally have the capability to travel in space, the notion that we should do so is being questioned. The author analyses the reasons for this — the historical/political and technological contingency of the Space Age and the sudden falling away of the conditions which drove space activity — and in the process provides a critique of the forgoing article and the tendency to search for utilitarian justifications of human spaceflight. He argues rather that space programmes will thrive only when driven by non-material cultural and political forces. US-Russian cooperation, which has principally been undertaken for geopolitical reasons is a model for the future.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号