首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   30篇
  免费   0篇
航空   8篇
航天技术   20篇
航天   2篇
  2021年   1篇
  2019年   1篇
  2018年   1篇
  2014年   1篇
  2013年   3篇
  2012年   1篇
  2010年   11篇
  2009年   2篇
  2008年   2篇
  2006年   1篇
  2003年   1篇
  2000年   1篇
  1998年   1篇
  1991年   1篇
  1984年   1篇
  1983年   1篇
排序方式: 共有30条查询结果,搜索用时 15 毫秒
21.
The TOPEX/Poseidon, Jason-1 and Jason-2 set of altimeter data now provide a time series of synoptic observations of the ocean that span nearly 17 years from the launch of TOPEX in 1992. The analysis of the altimeter data including the use of altimetry to monitor the global change in mean sea level requires a stable, accurate, and consistent orbit reference over the entire time span. In this paper, we describe the recomputation of a time series of orbits that rely on a consistent set of reference frames and geophysical models. The recomputed orbits adhere to the IERS 2003 standards for ocean and earth tides, use updates to the ITRF2005 reference frame for both the SLR and DORIS stations, apply GRACE-derived models for modeling of the static and time-variable gravity, implement the University College London (UCL) radiation pressure model for Jason-1, use improved troposphere modeling for the DORIS data, and apply the GOT4.7 ocean tide model for both dynamical ocean tide modeling and for ocean loading. The new TOPEX orbits have a mean SLR fit of 1.79 cm compared to 2.21 cm for the MGDR-B orbits. These new TOPEX orbits agree radially with independent SLR/crossover orbits at 0.70 cm RMS, and the orbit accuracy is estimated at 1.5–2.0 cm RMS over the entire TOPEX time series. The recomputed Jason-1 orbits agree radially with the Jason-1 GDR-C orbits at 1.08 cm RMS. The GSFC SLR/DORIS dynamic and reduced-dynamic orbits for Jason-2 agree radially with independent orbits from the CNES and JPL at 0.70–1.06 cm RMS. Applying these new orbits, and using the latest altimeter corrections for TOPEX, Jason-1, and Jason-2 from September 1992 to May 2009, we find a global rate in mean sea level of 3.0 ± 0.4 mm/yr.  相似文献   
22.
Doppler Orbitography and Radiopositioning Integrated by Satellite (DORIS) is a tracking technique based on a one-way ground to space Doppler link. For Low Earth Orbit (LEO) satellites, DORIS shows a robust capability in terms of data coverage and availability, due to a wide and well-distributed ground network, where data are made available by the International Doris Service (IDS). However, systematic errors remain in the DORIS data, such as instabilities of the on-board clock due to radiation encountered in space, which limit the accurate determination of station positions.The DORIS on-board clock frequency stability is degraded by the increased radiation found in the region of the South Atlantic Anomaly (SAA) and has been shown to degrade station position estimation. This paper introduces a new model correction to the DORIS data for the frequency of the Jason-2 Ultra Stable Oscillator (USO), derived from the Time Transfer by Laser Link (T2L2) experiment (Belli and Exertier, 2018). We show that a multi-satellite DORIS solution including this T2L2-corrected data applied to the frequency modelling for The DORIS data, improves the estimation of station coordinates. We show the tie residuals with respect to collocated GPS stations are improved by several millimeters. We also demonstrate that the 117-day (Jason-2) draconitic signal in the geophysical parameters is reduced, implying that the origin of this signal is not just solar radiation pressure mis-modeling, but also radiation-induced clock perturbations on the Jason-2 DORIS Ultra-Stable-Oscillator (USO). Finally we demonstrate through comparisons with the International Earth Rotations and Reference Systems Service (IERS) C04 series for Earth Orientation Parameters (EOP), that the estimation of EOP is improved in both a Jason-2 DORIS-only and a multi-satellite DORIS solution for EOP.  相似文献   
23.
Reigber  C.  Balmino  G.  Schwintzer  P.  Biancale  R.  Bode  A.  Lemoine  J.-M.  König  R.  Loyer  S.  Neumayer  H.  Marty  J.-C.  Barthelmes  F.  Perosanz  F.  Zhu  S. Y. 《Space Science Reviews》2003,108(1-2):55-66
A new long-wavelength global gravity field model, called EIGEN-1, has been derived in a joint German-French effort from orbit perturbations of the CHAMP satellite, exploiting CHAMP-GPS satellite-to-satellite tracking and on-board accelerometer data over a three months time span. For the first time it becomes possible to recover the gravity field from one satellite only. Thanks to CHAMP'S tailored orbit characteristics and dedicated instrumentation, providing continuous tracking and on-orbit measurements of non-gravitational satellite accelerations, the three months CHAMP-only solution provides the geoid and gravity with an accuracy of 20 cm and 1 mgal, respectively, at a half wavelength resolution of 550 km, which is already an improvement by a factor of two compared to any pre-CHAMP satellite-only gravity field model. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
24.
A somewhat unorthodox method for determining vertical crustal motion at a tide-gauge location is to difference the sea level time series with an equivalent time series determined from satellite altimetry. To the extent that both instruments measure an identical ocean signal, the difference will be dominated by vertical land motion at the gauge. We revisit this technique by analyzing sea level signals at 28 tide gauges that are colocated with DORIS geodetic stations. Comparisons of altimeter-gauge vertical rates with DORIS rates yield a median difference of 1.8 mm yr−1 and a weighted root-mean-square difference of 2.7 mm yr−1. The latter suggests that our uncertainty estimates, which are primarily based on an assumed AR(1) noise process in all time series, underestimates the true errors. Several sources of additional error are discussed, including possible scale errors in the terrestrial reference frame to which altimeter-gauge rates are mostly insensitive. One of our stations, Malè, Maldives, which has been the subject of some uninformed arguments about sea-level rise, is found to have almost no vertical motion, and thus is vulnerable to rising sea levels.  相似文献   
25.
In this review we confront the current theoretical understanding of particle acceleration at relativistic outflows with recent observational results on various source classes thought to involve such outflows, e.g. gamma-ray bursts, active galactic nuclei, and pulsar wind nebulae. We highlight the possible contributions of these sources to ultra-high-energy cosmic rays.  相似文献   
26.
(Resolution of the instability problem on Viking motor)—This paper gives the experimental and theorical work program which has permitted one to resolve the Viking motor instability problems and to ensure the L03 launching, one year after the L02 launching failure. After an exploration phase of search for working anomalies, instabilities have been characterized, acceptation procedure has been ratified, and different modifications have been tried.Theoretical work associated with the synthesis of experimental results have led to the finishing touch of operation and stability representative models. The pointing out of specific parameters has influenced the research of some solutions and the orientation of future works.  相似文献   
27.
On October 8, 2004, the Cluster and Double Star spacecraft crossed the near-Earth (12–19 RE) magnetotail neutral sheet during the recovery phase of a small, isolated substorm. Although they were separated in distance by ∼7 RE and in time by ∼30 min, both Cluster and Double Star observed steady, but highly structured Earthward moving >1000 km/s high speed H+ beams in the PSBL. This paper utilizes a global magnetohydrodynamic (MHD) simulation driven by Wind spacecraft solar wind input to model the large-scale structure of the PSBL and large-scale kinetic (LSK) particle tracing calculations to investigate the similarities and differences in the properties of the observed beams. This study finds that the large-scale shape of the PSBL is determined by the MHD configuration. On smaller scales, the LSK calculations, in good qualitative agreement with both Cluster and Double Star observations, demonstrated that the PSBL is highly structured in both time and space, on time intervals of less than 2 min, and spatial distances of the order of 0.2–0.5 RE. This picture of the PSBL is different from the ordered and structured region previously reported in observations.  相似文献   
28.
The Pioneer anomaly refers to the difference between the computed trajectories of the Pioneer 10 and 11 spacecrafts and their actual trajectories as observed through Doppler tracking. This difference has been described by the Jet Propulsion Laboratory (JPL) as a constant anomalous acceleration. In order to perform an independent analysis, specific trajectography software, named ODYSSEY, has been developed. The paper will focus on the models implemented in this software and on the results obtained. The existence of a constant anomalous acceleration is confirmed with properties similar to those reported by JPL. Time dependent components of the anomaly are also found and discussed.  相似文献   
29.
This article presents the organization of POGO studies on the Ariane 1 launcher, the input data for the systems, the studies concerning the first stage L140, the second stage L33 and the constructive conclusions drawn from these studies.  相似文献   
30.
This paper evaluates orbit accuracy and systematic error for altimeter satellite precise orbit determination on TOPEX, Jason-1, Jason-2 and Jason-3 by comparing the use of four SLR/DORIS station complements from the International Terrestrial Reference System (ITRS) 2014 realizations with those based on ITRF2008. The new Terrestrial Reference Frame 2014 (TRF2014) station complements include ITRS realizations from the Institut National de l’Information Géographique et Forestière (IGN) ITRF2014, the Jet Propulsion Laboratory (JPL) JTRF2014, the Deutsche Geodätisches Forschungsinstitut (DGFI) DTRF2014, and the DORIS extension to ITRF2014 for Precise Orbit Determination, DPOD2014. The largest source of error stems from ITRF2008 station position extrapolation past the 2009 solution end time. The TRF2014 SLR/DORIS complement impact on the ITRF2008 orbit is only 1–2 mm RMS radial difference between 1992–2009, and increases after 2009, up to 5 mm RMS radial difference in 2016. Residual analysis shows that station position extrapolation error past the solution span becomes evident even after two years, and will contribute to about 3–4 mm radial orbit error after seven years. Crossover data show the DTRF2014 orbits are the most accurate for the TOPEX and Jason-2 test periods, and the JTRF2014 orbits for the Jason-1 period. However for the 2016 Jason-3 test period only the DPOD2014-based orbits show a strong and statistically significant margin of improvement. The positive results with DTRF2014 suggest the new approach to correct station positions or normal equations for non-tidal loading before combination is beneficial. We did not find any compelling POD advantage in using non-linear over linear station velocity models in our SLR & DORIS orbit tests on the Jason satellites. The JTRF2014 proof-of-concept ITRS realization demonstrates the need for improved SLR+DORIS orbit centering when compared to the Ries (2013) CM annual model. Orbit centering error is seen as an annual radial signal of 0.4 mm amplitude with the CM model. The unmodeled CM signals show roughly a 1.8 mm peak-to-peak annual variation in the orbit radial component. We find the TRF network stability pertinent to POD can be defined only by examination of the orbit-specific tracking network time series. Drift stability between the ITRF2008 and the other TRF2014-based orbits is very high, the relative mean radial drift error over water is no larger than 0.04 mm/year over 1993–2015. Analyses also show TRF induced orbit error meets current altimeter rate accuracy goals for global and regional sea level estimation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号