首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   21篇
  免费   0篇
航空   12篇
航天技术   3篇
综合类   1篇
航天   5篇
  2016年   1篇
  2014年   1篇
  2013年   1篇
  2012年   2篇
  2011年   3篇
  2009年   3篇
  2008年   1篇
  2007年   4篇
  1994年   1篇
  1988年   1篇
  1986年   1篇
  1968年   1篇
  1967年   1篇
排序方式: 共有21条查询结果,搜索用时 31 毫秒
11.
Formed as a result of the solar wind (SW) interaction with the circum-heliospheric interstellar medium (CHISM), the outer heliosphere is generically three-dimensional because of the SW asphericity and the action of the interstellar and interplanetary magnetic fields (ISMF and IMF). In this paper we show that charge exchange between neutral and charged components of the SW–CHISM plasmas plays a dominant role not only in determining the geometrical size of the heliosphere, but also in the modulation of magnetic-field-induced asymmetries. More specifically, charge exchange between SW and CHISM protons and primary neutrals of interstellar origin always acts to decrease the asymmetry of the termination shock and the heliopause, which can otherwise be very large. This is particularly pronounced because the ionization ratio of the CHISM plasma is rather low. To investigate the deflection of the CHISM neutral hydrogen flow in the inner heliosphere from its original orientation in the unperturbed CHISM, we create two-dimensional neutral H velocity distributions in the inner heliosphere within a 45-degree circular conical surface with the apex at the Sun and the axis parallel to the interstellar flow vector. It is shown that the distribution of deflections is very anisotropic, that is, the most probable orientation of the H-atom velocity differs from its average direction. We show that the average deflection of the H-atom flow, for reasonable ISMF strengths, occurs mostly in the plane formed by the ISMF and CHISM velocity vectors at infinity. The possibility that the ISMF orientation may influence the 2–3 kHz radio emission, which is believed to originate in the outer heliosheath, is discussed.  相似文献   
12.
In this discussion of observational constraints on the source regions and acceleration processes of solar wind, we will focus on the ionic composition of the solar wind and the distribution of charge states of heavy elements such as oxygen and iron. We first focus on the now well-known bi-modal nature of solar wind, which dominates the heliosphere at solar minimum: Compositionally cool solar wind from polar coronal holes over-expands, filling a much larger solid angle than the coronal holes on the Sun. We use a series of remote and in-situ characteristics to derive a global geometric expansion factor of?~5. Slower, streamer-associated wind is located near the heliospheric current sheet with a width of 10–20°, but in a well-defined band with a geometrically small transition width. We then compute charge states under the assumption of thermal electron distributions and temperature, velocity, and density profiles predicted by a recent solar wind model, and conclude that the solar wind originates from a hot source at around 1 million?K, characteristic of the closed corona.  相似文献   
13.
We discuss the asymmetry of the heliospheric discontinuities obtained from the analysis of 3D modeling of the solar wind (SW) interaction with local interstellar medium (LISM). The flow of charged particles is governed by the ideal MHD equations and the flow of neutral particles is described by the Boltzmann equation. The emphasis is made on the asymmetries of the termination shock (TS) and the heliopause under the combined action of the interstellar and interplanetary magnetic fields (ISMF and IMF) in the presence of neutral hydrogen atoms whose transport through the heliosphere is modeled kinetically, using a Monte Carlo approach. We show that the deflection of neutral hydrogen flow from its original direction in the unperturbed LISM is highly anisotropic and evaluate a possible angle between the hydrogen deflection plane measured in the SOHO SWAN experiment and the plane containing the ISMF and LISM velocity vectors for different ISMF strengths. It is shown that the ISMF of a strength greater than 4 μG can account for the 10 AU difference in the TS heliocentric difference observed during its crossing by the Voyager 1 and Voyager 2 spacecraft, which however results in a larger discrepancy between the calculated and observed velocity distributions. The effect of a strong ISMF on the distribution of plasma quantities in the inner heliosheath and on 2–3 kHz radio emission is discussed.  相似文献   
14.
There are three distinct energy ranges within the broad spectrum of gamma-ray astronomy, low energy (which in turn is subdivided), high energy, and very high and ultra-high energy. Each has its own unique type of instrumentation. Only in the very high-energy range do the telescopes bear any resemblence to optical telescopes; the rest appear more like instrumentation for high-energy physics. The low- and high-energy ranges are now primarly dependent on spaceflight, although some balloon altitude research is still being accomplished. Satellites planned to be launched in the next two years will carry telescopes with considerably more capability than those previously flown in space. In the very high and ultra-high energy realm, large ground based systems are used to detect the secondary radiation from interactions of the gamma radiation with the air. In all cases, software and data analysis are becoming increasingly important aspects of the subject as the data become ever greater and more complex. Beyond the telescopes to be flown in space or installed on the ground soon, instrumentation, taking advantage of new detector techniques which have come into being or older ones which now seem capable of being adapted to space, are being developed for the more distant future.  相似文献   
15.
A Gamma-Ray and Neutron Spectrometer (GRNS) instrument has been developed as part of the science payload for NASA’s Discovery Program mission to the planet Mercury. Mercury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) launched successfully in 2004 and will journey more than six years before entering Mercury orbit to begin a one-year investigation. The GRNS instrument forms part of the geochemistry investigation and will yield maps of the elemental composition of the planet surface. Major elements include H, O, Na, Mg, Si, Ca, Ti, Fe, K, and Th. The Gamma-Ray Spectrometer (GRS) portion detects gamma-ray emissions in the 0.1- to 10-MeV energy range and achieves an energy resolution of 3.5 keV full-width at half-maximum for 60Co (1332 keV). It is the first interplanetary use of a mechanically cooled Ge detector. Special construction techniques provide the necessary thermal isolation to maintain the sensor’s encapsulated detector at cryogenic temperatures (90 K) despite the intense thermal environment. Given the mission constraints, the GRS sensor is necessarily body-mounted to the spacecraft, but the outer housing is equipped with an anticoincidence shield to reduce the background from charged particles. The Neutron Spectrometer (NS) sensor consists of a sandwich of three scintillation detectors working in concert to measure the flux of ejected neutrons in three energy ranges from thermal to ∼7 MeV. The NS is particularly sensitive to H content and will help resolve the composition of Mercury’s polar deposits. This paper provides an overview of the Gamma-Ray and Neutron Spectrometer and describes its science and measurement objectives, the design and operation of the instrument, the ground calibration effort, and a look at some early in-flight data.  相似文献   
16.
Old arguments that free O(2) must have been available at Earth's surface prior to the origin of photosynthesis have been revived by a new study that shows that aerobic respiration can occur at dissolved oxygen concentrations much lower than had previously been thought, perhaps as low as 0.05?nM, which corresponds to a partial pressure for O(2) of about 4?×?10(-8) bar. We used numerical models to study whether such O(2) concentrations might have been provided by atmospheric photochemistry. Results show that disproportionation of H(2)O(2) near the surface might have yielded enough O(2) to satisfy this constraint. Alternatively, poleward transport of O(2) from the equatorial stratosphere into the polar night region, followed by downward transport in the polar vortex, may have brought O(2) directly to the surface. Thus, our calculations indicate that this "early respiration" hypothesis might be physically reasonable.  相似文献   
17.
Parents and families have the greatest influence on children’s attitudes towards education and career choices. If students’ attitudes towards science, particularly the physical sciences, are not influenced positively by parental/familial attitudes, efforts to improve the quality of content and teaching of these subjects in school may be futile. Research shows that parental involvement increases student achievement outcomes, and family-oriented programs have a direct impact on student performance.  相似文献   
18.
NASA’s MESSENGER (MErcury Surface, Space ENvironment, GEochemistry, and Ranging) mission will further the understanding of the formation of the planets by examining the least studied of the terrestrial planets, Mercury. During the one-year orbital phase (beginning in 2011) and three earlier flybys (2008 and 2009), the X-Ray Spectrometer (XRS) onboard the MESSENGER spacecraft will measure the surface elemental composition. XRS will measure the characteristic X-ray emissions induced on the surface of Mercury by the incident solar flux. The Kα lines for the elements Mg, Al, Si, S, Ca, Ti, and Fe will be detected. The 12° field-of-view of the instrument will allow a spatial resolution that ranges from 42 km at periapsis to 3200 km at apoapsis due to the spacecraft’s highly elliptical orbit. XRS will provide elemental composition measurements covering the majority of Mercury’s surface, as well as potential high-spatial-resolution measurements of features of interest. This paper summarizes XRS’s science objectives, technical design, calibration, and mission observation strategy.  相似文献   
19.
The interaction of the solar wind with the local interstellar medium is characterized by the self-consistent coupling of solar wind plasma, both upstream and downstream of the heliospheric termination shock, the interstellar plasma, and the neutral atom component of interstellar and solar wind origin. The complex coupling results in the creation of new plasma components (pickup ions), turbulence, and anomalous cosmic rays, and new populations of neutral atoms and their coupling can lead to energetic neutral atoms that can be detected at 1 AU. In this review, we discuss the interaction and coupling of global sized structures (the heliospheric boundary regions) and kinetic physics (the distributions that are responsible for the creation of energetic neutral atoms) based on models that have been developed by the University of Alabama in Huntsville group.  相似文献   
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号