首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   121篇
  免费   1篇
航空   56篇
航天技术   56篇
航天   10篇
  2022年   1篇
  2021年   2篇
  2020年   1篇
  2019年   1篇
  2018年   2篇
  2017年   1篇
  2016年   2篇
  2015年   2篇
  2014年   2篇
  2013年   5篇
  2011年   9篇
  2010年   4篇
  2009年   4篇
  2008年   17篇
  2007年   2篇
  2006年   2篇
  2005年   1篇
  2004年   2篇
  2003年   1篇
  2002年   2篇
  2001年   1篇
  1999年   2篇
  1998年   1篇
  1997年   4篇
  1996年   1篇
  1995年   2篇
  1992年   3篇
  1991年   2篇
  1988年   1篇
  1987年   4篇
  1985年   10篇
  1984年   4篇
  1983年   2篇
  1982年   8篇
  1981年   5篇
  1979年   1篇
  1978年   1篇
  1977年   2篇
  1976年   1篇
  1975年   1篇
  1973年   1篇
  1972年   2篇
排序方式: 共有122条查询结果,搜索用时 15 毫秒
101.
We present rotational temperature measurements of the mesospheric OH emission layer using a meridional imaging spectrograph at Millstone Hill (42.6°N, 72.5°W). The system is equipped with a state-of-the-art bare-CCD detector and can yield simultaneous quasi-meridional images of the mesospheric OH and O2 intensity and temperature fields at 87 and 94 km altitude during the course of each night. A cross-validation study of the rotational OH temperature measurements obtained on 61 nights during the autumnal months of 2005–2007 was undertaken with near-simultaneous kinetic temperature measurements made by the SABER instrument aboard the NASA TIMED satellite during overpasses of Millstone Hill. Excellent agreement was obtained between the two datasets with the small differences being attributable to differences in the spatial and temporal averaging inherent between the two datasets.  相似文献   
102.
The Galileo Orbiter carries a complement of fields and particles instruments designed to provide data needed to shed light on the structure and dynamical variations of the Jovian magnetosphere. Many questions remain regarding the temporal and spatial properties of the magnetospheric magnetic field, how the magnetic field maintains corotation of the embedded plasma and the circumstances under which corotation breaks down, the nature of magnetic perturbations that transport plasma across magnetic shells in different parts of the system, and the electromagnetic properties of the Jovian moons and how they interact with the magnetospheric plasma. Critical to answering these closely related questions are measurements of the dc and low-frequency magnetic field. The Galileo Orbiter carries a fluxgate magnetometer designed to provide the sensitive measurements required for this purpose. In this paper, the magnetometer is described. The instrument has two boom-mounted, three-axis sensor assemblies. Flipper mechanisms are included in each sensor assembly for the purpose of offset calibration. The microprocessor controlled data handling system produces calibrated despun data that can be used directly without further processing. A memory system stores data for those periods when the spacecraft telemetry is not active. This memory system can also be used for storing high time-resolution snapshots of data.  相似文献   
103.
The scientific objectives, design and capabilities of the Rosetta Lander’s ROMAP instrument are presented. ROMAP’s main scientific goals are longterm magnetic field and plasma measurements of the surface of Comet 67P/Churyumov-Gerasimenko in order to study cometary activity as a function of heliocentric distance, and measurements during the Lander’s descent to investigate the structure of the comet’s remanent magnetisation. The ROMAP fluxgate magnetometer, electrostatic analyser and Faraday cup measure the magnetic field from 0 to 32 Hz, ions of up to 8000 keV and electrons of up to 4200 keV. Additional two types of pressure sensors – Penning and Minipirani – cover a pressure range from 10−8 to 101 mbar. ROMAP’s sensors and electronics are highly integrated, as required by a combined field/plasma instrument with less than 1 W power consumption and 1 kg mass.  相似文献   
104.
Examinations of the magnetohydrodynamic (MHD) equations across a bow shock are presented. These equations are written in the familiar Rankine–Hugoniot set, and an exact solution to this set is given which involves the upstream magnetosonic Mach number, plasma , polytropic index, and B-v , as a function of position along the shock surface. The asymptotic Mach cone angle of the shock surface is also given as a function of the upstream parameters, as a set of transcendental equations. The standoff position of a detached bow shock from an obstacle is also reviewed. In addition, a detailed examination of the hydrodynamic equations along the boundary of the obstacle is performed. Lastly, the MHD relations along the obstacle surface are examined, for specific orientations of the upstream interplanetary magnetic field (IMF) in relation to the upstream flow velocity vector.  相似文献   
105.
We present observations from the first passage through the lunar plasma wake by one of two spacecraft comprising ARTEMIS (Acceleration, Reconnection, Turbulence, and Electrodynamics of the Moon??s Interaction with the Sun), a new lunar mission that re-tasks two of five probes from the THEMIS magnetospheric mission. On Feb 13, 2010, ARTEMIS probe P1 passed through the wake at ??3.5 lunar radii downstream from the Moon, in a region between those explored by Wind and the Lunar Prospector, Kaguya, Chandrayaan, and Chang??E missions. ARTEMIS observed interpenetrating proton, alpha particle, and electron populations refilling the wake along magnetic field lines from both flanks. The characteristics of these distributions match expectations from self-similar models of plasma expansion into vacuum, with an asymmetric character likely driven by a combination of a tilted interplanetary magnetic field and an anisotropic incident solar wind electron population. On this flyby, ARTEMIS provided unprecedented measurements of the interpenetrating beams of both electrons and ions naturally produced by the filtration and acceleration effects of electric fields set up during the refilling process. ARTEMIS also measured electrostatic oscillations closely correlated with counter-streaming electron beams in the wake, as previously hypothesized but never before directly measured. These observations demonstrate the capability of the comprehensively instrumented ARTEMIS spacecraft and the potential for new lunar science from this unique two spacecraft constellation.  相似文献   
106.
107.
The rapidly rotating giant planets of the outer solar system all possess strong dynamo-driven magnetic fields that carve a large cavity in the flowing magnetized solar wind. Each planet brings a unique facet to the study of planetary magnetism. Jupiter possesses the largest planetary magnetic moment, 1.55×1020 Tm3, 2×104 times larger than the terrestrial magnetic moment whose axis of symmetry is offset about 10° from the rotation axis, a tilt angle very similar to that of the Earth. Saturn has a dipole magnetic moment of 4.6×1018 Tm3 or 600 times that of the Earth, but unlike the Earth and Jupiter, the tilt of this magnetic moment is less than 1° to the rotation axis. The other two gas giants, Uranus and Neptune, have unusual magnetic fields as well, not only because of their tilts but also because of the harmonic content of their internal fields. Uranus has two anomalous tilts, of its rotation axis and of its dipole axis. Unlike the other planets, the rotation axis of Uranus is tilted 97.5° to the normal to its orbital plane. Its magnetic dipole moment of 3.9×1017 Tm3 is about 50 times the terrestrial moment with a tilt angle of close to 60° to the rotation axis of the planet. In contrast, Neptune with a more normal obliquity has a magnetic moment of 2.2×1017 Tm3 or slightly over 25 times the terrestrial moment. The tilt angle of this moment is 47°, smaller than that of Uranus but much larger than those of the Earth, Jupiter and Saturn. These two planets have such high harmonic content in their fields that the single flyby of Voyager was unable to resolve the higher degree coefficients accurately. The four gas giants have no apparent surface features that reflect the motion of the deep interior, so the magnetic field has been used to attempt to provide this information. This approach works very well at Jupiter where there is a significant tilt of the dipole and a long baseline of magnetic field measurements (Pioneer 10 to Galileo). The rotation rate is 870.536° per day corresponding to a (System III) period of 9 h 55 min 26.704 s. At Saturn, it has been much more difficult to determine the equivalent rotation period. The most probable rotation period of the interior is close to 10 h 33 min, but at this writing, the number is still uncertain. For Uranus and Neptune, the magnetic field is better suited for the determination of the planetary rotation period but the baseline is too short. While it is possible that the smaller planetary bodies of the outer solar system, too, have magnetic fields or once had, but the current missions to Vesta, Ceres and Pluto do not include magnetic measurements.  相似文献   
108.
Understanding the evolution of solar wind structures in the inner heliosphere as they approach the Earth is important to space weather prediction. From the in situ solar wind plasma and magnetic field measurements of Pioneer Venus Orbiter (PVO) at 0.72 AU (1979–1988), and of Wind/Advanced Composition Explorer (ACE) missions at 1 AU (1995–2004), we identify and characterize two major solar wind structures, stream interaction regions (SIRs) and interplanetary coronal mass ejections (ICMEs). The average percentage of SIRs occurring with shocks increases significantly from 3% to 24% as they evolve from 0.72 to 1 AU. The average occurrence rate, radial extent, and bulk velocity variation of SIRs do not change from 0.72 to 1 AU, while peak pressure and magnetic field strength both decrease with the radial evolution of SIRs. Within the 0.28 AU distance from the orbit of Venus to that of Earth, the average fraction of ICMEs with shocks increases from 49% to 66%, and the typical radial extent of ICMEs expands by about a fraction of 1.4, with peak pressure and magnetic field strength decreasing significantly. The mean occurrence rate and expansion velocity of ICMEs do not change from 0.72 to 1 AU.  相似文献   
109.
Despite its lack of an intrinsic magnetic field Venus has a well defined magnetotail, containing about 3 megawebers of magnetic flux in a tail about 4 RV across with perhaps a slightly elliptical cross section. This tail arises through the mass-loading of magnetic flux tubes passing by the planet. Mass-loading can occur due to charge exchange and photo-ionization as well as from the diffusion of magnetic field into the ionosphere. Various evidence exists for the mass-loading process, including the direct observation of the picked up ions with both the Venera and Pioneer Venus plasma analyzers.  相似文献   
110.
The study of ULF waves in space has been in progress for about 12 years. However, because of numerous observational difficulties the properties of the waves in this frequency band (10-3 to 1 Hz) are poorly known. These difficulties include the nature of satellite orbits, telemetry limitations on magnetometer frequency response and compromises between dynamic range and resolution. Despite the paucity of information, there is increasing recognition of the importance of these measurements in magnetospheric processes. A number of recent theoretical papers point out the roles such waves play in the dynamic behavior of radiation belt particles.At the present time the existing satellite observations of ULF waves suggest that the level of geomagnetic activity controls the types of waves which occur within the magnetosphere. Consequently, we consider separately quiet times, times of magnetospheric substorms and times of magnetic storms. Within each of these categories there are distinctly different wave modes distinguished by their polarization: either transverse or parallel to the ambient field. In addition, these wave phenomena occur in distinct frequency bands. In terms of the standard nomenclature of ground micropulsation studies ULF wave types observed in the magnetosphere include quiet time transverse — Pc 1, Pc 3, Pc 4, Pc 5 quiet time compressional — Pc 1 and Pi 1; substorm compressional Pi 1 and Pi 2; storm transverse — Pc 1; storm compressional Pc 4, 5. The satellite observations are not yet sufficient to determine whether the various bands identified in the ground data are equally appropriate in space.Publication No. 982. Institute of Geophysics and Planetary Physics, University of California, Los Angeles, Calif. 90024.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号