首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   22篇
  免费   0篇
航空   13篇
航天技术   4篇
航天   5篇
  2021年   1篇
  2019年   1篇
  2014年   2篇
  2012年   2篇
  2010年   3篇
  2008年   2篇
  2007年   1篇
  2004年   1篇
  2003年   1篇
  2001年   1篇
  1991年   1篇
  1985年   1篇
  1973年   1篇
  1971年   1篇
  1970年   1篇
  1969年   1篇
  1965年   1篇
排序方式: 共有22条查询结果,搜索用时 281 毫秒
11.
Thermospheric Density: An Overview of Temporal and Spatial Variations   总被引:3,自引:0,他引:3  
Neutral density shows complicated temporal and spatial variations driven by external forcing of the thermosphere/ionosphere system, internal dynamics, and thermosphere and ionosphere coupling. Temporal variations include abrupt changes with a time scale of minutes to hours, diurnal variation, multi-day variation, solar-rotational variation, annual/semiannual variation, solar-cycle variation, and long-term trends with a time scale of decades. Spatial variations include latitudinal and longitudinal variations, as well as variation with altitude. Atmospheric drag on satellites varies strongly as a function of thermospheric mass density. Errors in estimating density cause orbit prediction error, and impact satellite operations including accurate catalog maintenance, collision avoidance for manned and unmanned space flight, and re-entry prediction. In this paper, we summarize and discuss these density variations, their magnitudes, and their forcing mechanisms, using neutral density data sets and modeling results. The neutral density data sets include neutral density observed by the accelerometers onboard the Challenging Mini-satellite Payload (CHAMP), neutral density at satellite perigees, and global-mean neutral density derived from thousands of orbiting objects. Modeling results are from the National Center for Atmospheric Research (NCAR) thermosphere-ionosphere-electrodynamics general circulation model (TIE-GCM), and from the NRLMSISE-00 empirical model.  相似文献   
12.
The LDEF Interplanetary Dust Experiment was unique in providing a time history of impacts of micron-sized particles on six orthogonal faces of the vehicle over a span of nearly a full year. Over 15000 hits were recorded, representing a mix of zodiacal dust, meteor stream grains, orbital debris, perhaps beta-meteoroids, and possibly interstellar matter. Although the total number was higher than predicted, the relative panel activity distribution was near expectations. Detailed deconvolution of the impact record with orbital data is underway, to examine each of these populations. Very preliminary results of the fairly crude “first look” analysis suggest that debris is the major particle component at 500 km. The data show clear evidence of some known meteor streams as sharp, tightly-focused events, unlike their visible counterparts. Some apparent debris events show similar signatures. Data from the leading and trailing edges suggest a detection of beta-meteoroids, but the analysis is not yet conclusive. Absolute fluxes and flux ratios are not yet known, since the detector status analysis is yet incomplete.  相似文献   
13.
Drilling systems for extraterrestrial subsurface exploration   总被引:4,自引:0,他引:4  
Drilling consists of 2 processes: breaking the formation with a bit and removing the drilled cuttings. In rotary drilling, rotational speed and weight on bit are used to control drilling, and the optimization of these parameters can markedly improve drilling performance. Although fluids are used for cuttings removal in terrestrial drilling, most planetary drilling systems conduct dry drilling with an auger. Chip removal via water-ice sublimation (when excavating water-ice-bound formations at pressure below the triple point of water) and pneumatic systems are also possible. Pneumatic systems use the gas or vaporization products of a high-density liquid brought from Earth, gas provided by an in situ compressor, or combustion products of a monopropellant. Drill bits can be divided into coring bits, which excavate an annular shaped hole, and full-faced bits. While cylindrical cores are generally superior as scientific samples, and coring drills have better performance characteristics, full-faced bits are simpler systems because the handling of a core requires a very complex robotic mechanism. The greatest constraints to extraterrestrial drilling are (1) the extreme environmental conditions, such as temperature, dust, and pressure; (2) the light-time communications delay, which necessitates highly autonomous systems; and (3) the mission and science constraints, such as mass and power budgets and the types of drilled samples needed for scientific analysis. A classification scheme based on drilling depth is proposed. Each of the 4 depth categories (surface drills, 1-meter class drills, 10-meter class drills, and deep drills) has distinct technological profiles and scientific ramifications.  相似文献   
14.
Several different types of small silicon solar cell arrays mounted on lightweight honeycomb panels and on flexible substrates were subjected to long-term thermal cycling tests between -160 and 600C in dry nitrogen. Other tests included immersion in liquid nitrogen and vibration fatigue tests in excess of one million cycles. The arrays experienced a reduction in output caused by contact failure, fracture in the silicon and cover slide, and disintegration of the honeycomb. Failure modes caused by different cell and interconnect constructions are compared.  相似文献   
15.
This article reviews our knowledge of long-term changes and trends in the upper atmosphere and ionosphere. These changes are part of complex and comprehensive pattern of long-term trends in the Earth’s atmosphere. They also have practical impact. For example, decreasing thermospheric density causes the lifetime of orbiting space debris to increase, which is becoming a significant threat to important satellite technologies. Since the first paper on upper atmosphere trends was published in 1989, our knowledge has progressed considerably. Anthropogenic emissions of greenhouse gases affect the whole atmosphere, not only the troposphere. They cause warming in the troposphere but cooling in the upper atmosphere. Greenhouse gases such as carbon dioxide are not the only driver of long-term changes and trends in the upper atmosphere and ionosphere. Anthropogenic changes of stratospheric ozone, long-term changes of geomagnetic and solar activity, and other drivers play a role as well, although greenhouse gases appear to be the main driver of long-term trends. This makes the pattern of trends more complex and variable. A?consistent, although incomplete, scenario of trends in the upper atmosphere and ionosphere is presented. Trends in F2-region ionosphere parameters, in mesosphere-lower thermosphere dynamics, and in noctilucent or polar mesospheric clouds, are discussed in more detail. Advances in observational and theoretical analysis have explained some previous discrepancies in this global trend scenario. An important role in trend investigations is played by model simulations, which facilitate understanding of the mechanisms behind the observed trends.  相似文献   
16.
PICARD is a space-based observatory hosting the Solar Diameter Imager and Surface Mapper (SODISM) telescope, which has continuously observed the Sun from July 2010 and up to March 2014. In order to study the fine structure of the solar surface, it is helpful to apply techniques that enhance the images so as to improve the visibility of solar features such as sunspots or faculae. The objective of this work is to develop an innovative technique to enhance the quality of the SODISM images in the five wavelengths monitored by the telescope at 215.0?nm, 393.37?nm, 535.7?nm, 607.1?nm and 782.2?nm. An enhancement technique using interpolation of the high-frequency sub-bands obtained by Discrete Wavelet Transforms (DWT) and the input image is applied to the SODISM images. The input images are decomposed by the DWT as well as Stationary Wavelet Transform (SWT) into four separate sub-bands in horizontal and vertical directions namely, low-low (LL), low–high (LH), high-low (HL) and high–high (HH) frequencies. The DWT high frequency sub-bands are interpolated by a factor 2. The estimated high frequency sub-bands (edges) are enhanced by introducing an intermediate stage using a Stationary Wavelet Transform (SWT), and then all these sub-bands and input image are combined and interpolated with half of the interpolation factor α/2, used to interpolate the high-frequency sub-bands, in order to reach the required size for IDWT processing. Quantitative and visual results show the superiority of the proposed technique over a bicubic image resolution enhancement technique. In addition, filling factors for sunspots are calculated from SODISM images and results are presented in this work.  相似文献   
17.
Observations from planetary spacecraft missions have demonstrated a spectrum of dynamo behaviour in planets. From currently active dynamos, to remanent crustal fields from past dynamo action, to no observed magnetization, the planets and moons in our solar system offer magnetic clues to their interior structure and evolution. Here we review numerical dynamo simulations for planets other than Earth. For the terrestrial planets and satellites, we discuss specific magnetic field oddities that dynamo models attempt to explain. For the giant planets, we discuss both non-magnetic and magnetic convection models and their ability to reproduce observations of surface zonal flows and magnetic field morphology. Future improvements to numerical models and new missions to collect planetary magnetic data will continue to improve our understanding of the magnetic field generation process inside planets.  相似文献   
18.
The Lunar Orbiter Laser Altimeter (LOLA) is an instrument on the payload of NASA’s Lunar Reconnaissance Orbiter spacecraft (LRO) (Chin et al., in Space Sci. Rev. 129:391–419, 2007). The instrument is designed to measure the shape of the Moon by measuring precisely the range from the spacecraft to the lunar surface, and incorporating precision orbit determination of LRO, referencing surface ranges to the Moon’s center of mass. LOLA has 5 beams and operates at 28 Hz, with a nominal accuracy of 10 cm. Its primary objective is to produce a global geodetic grid for the Moon to which all other observations can be precisely referenced.  相似文献   
19.
20.
Paleomagnetic Records of Meteorites and Early Planetesimal Differentiation   总被引:1,自引:0,他引:1  
The large-scale compositional structures of planets are primarily established during early global differentiation. Advances in analytical geochemistry, the increasing diversity of extraterrestrial samples, and new paleomagnetic data are driving major changes in our understanding of the nature and timing of these early melting processes. In particular, paleomagnetic studies of chondritic and small-body achondritic meteorites have revealed a diversity of magnetic field records. New, more sensitive and highly automated paleomagnetic instrumentation and an improved understanding of meteorite magnetic properties and the effects of shock, weathering, and other secondary processes are permitting primary and secondary magnetization components to be distinguished with increasing confidence. New constraints on the post-accretional histories of meteorite parent bodies now suggest that, contrary to early expectations, few if any meteorites have been definitively shown to retain records of early solar and protoplanetary nebula magnetic fields. However, recent studies of pristine samples coupled with new theoretical insights into the possibility of dynamo generation on small bodies indicate that some meteorites retain records of internally generated fields. These results indicate that some planetesimals formed metallic cores and early dynamos within just a few million years of solar system formation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号