首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8537篇
  免费   21篇
  国内免费   24篇
航空   4232篇
航天技术   2995篇
综合类   38篇
航天   1317篇
  2021年   65篇
  2019年   52篇
  2018年   144篇
  2017年   89篇
  2016年   86篇
  2014年   182篇
  2013年   229篇
  2012年   206篇
  2011年   289篇
  2010年   204篇
  2009年   339篇
  2008年   428篇
  2007年   223篇
  2006年   210篇
  2005年   236篇
  2004年   190篇
  2003年   274篇
  2002年   169篇
  2001年   288篇
  2000年   156篇
  1999年   203篇
  1998年   237篇
  1997年   179篇
  1996年   220篇
  1995年   278篇
  1994年   259篇
  1993年   160篇
  1992年   192篇
  1991年   113篇
  1990年   84篇
  1989年   199篇
  1988年   97篇
  1987年   105篇
  1986年   85篇
  1985年   263篇
  1984年   210篇
  1983年   181篇
  1982年   201篇
  1981年   262篇
  1980年   92篇
  1979年   72篇
  1978年   74篇
  1977年   66篇
  1976年   63篇
  1975年   75篇
  1974年   56篇
  1973年   58篇
  1972年   69篇
  1971年   59篇
  1970年   59篇
排序方式: 共有8582条查询结果,搜索用时 15 毫秒
91.
We have evaluated the Lyman-α limb emission from the exospheric hydrogen of Mars measured by the neutral particle detector of the ASPERA-3 instrument on Mars Express in 2004 at low solar activity (solar activity index = 42, F10.7=100). We derive estimates for the hydrogen exobase density, n H = 1010 m?3, and for the apparent temperature, T > 600 K. We conclude that the limb emission measurement is dominated by a hydrogen component that is considerably hotter than the bulk temperature at the exobase. The derived values for the exosphere density and temperature are compared with similar measurements done by the Mariner space probes in the 1969. The values found with Mars Express and Mariner data are brought in a broader context of exosphere models including the possibility of having two hydrogen components in the Martian exosphere. The present observation of the Martian hydrogen exosphere is the first one at high altitudes during low solar activity, and shows that for low solar activity exospheric densities are not higher than for high solar activity.  相似文献   
92.
The Plasma and Suprathermal Ion Composition (PLASTIC) investigation provides the in situ solar wind and low energy heliospheric ion measurements for the NASA Solar Terrestrial Relations Observatory Mission, which consists of two spacecraft (STEREO-A, STEREO-B). PLASTIC-A and PLASTIC-B are identical. Each PLASTIC is a time-of-flight/energy mass spectrometer designed to determine the elemental composition, ionic charge states, and bulk flow parameters of major solar wind ions in the mass range from hydrogen to iron. PLASTIC has nearly complete angular coverage in the ecliptic plane and an energy range from ~0.3 to 80 keV/e, from which the distribution functions of suprathermal ions, including those ions created in pick-up and local shock acceleration processes, are also provided.  相似文献   
93.
The main goal of this paper is to get physically informative comprehensive data about dynamics of the solar magnetic field, geomagnetic field, and interplanetary magnetic field over large time scales. The total sunspot magnetic flux, aa and IDV indices of geomagnetic activity, the IMF strength, the dipole-octopole index of the large-scale magnetic field of the Sun, and the open magnetic flux are reconstructed for 400 years. The reconstruction of the π index of the large-scale polar magnetic field of the Sun is performed for 150 years.  相似文献   
94.
These studies were designed and coordinated to evaluate specific aspects of man's immunologic and hematologic systems which might be altered by or respond to the space flight environment. The biochemical functions investigated included cytogenetic damage to blood cells, immune resistance to disease, regulation of plasma and red cell volumes, metabolic processes of the red blood cell, and physical chemical aspects of red blood cell functions. Only minor changes were observed in the functional capacity of erythrocytes as determined by measuring the concentrations of selected intracellular enzymes and metabolites. Tests of red cell osmotic regulation indicated some elevation in the activity of the metabolic dependent Na-K pump, with no significant alterations in the cellular Na and K concentrations or osmotic fragility. A transient shift in red cell specific-gravity profile was observed on recovery, possibly related to changes in cellular water content. Measurements of hemoconcentration (hematocrit, hemoglobin concentration, red cell count) indicated significant fluctuations postflight, reflecting observed changes in red cell mass and plasma volume. There was no apparent reticulocytosis during the 18 days following the first manned Skylab mission in spite of a significant loss in red cell mass. However, the reticulocyte count and index did increase significantly 5 to 7 days after completion of the second, longer duration, flight. There were no significant changes in either the while blood cell count or differential. However, the capacity of lymphocytes to respond to an in vitro mitogenic challenge was repressed postflight, and appeared to be related to mission duration. The cause of this repression is unknown at this time. Only minor differences were observed in plasma protein patterns. In the second mission there were changes in the proteins involved in the coagulation process which suggested a hypercoagulative condition.  相似文献   
95.
One of the Skylab experiments dealt with motion sickness, comparing susceptibility in the workshop aloft with susceptibility preflight and postflight. Tests were conducted on and after mission-day 8 (MD 8) by which time the astronauts were adapted to working conditions. Stressful accelerations were generated by requiring the astronauts, with eyes covered, to execute standardized head movements (front, back, left, and right) while in a chair that could be rotated at angular velocities up to 30 rpm. The selected endpoint was either 150 discrete head movements or a very mild level of motion sickness. In all rotation experiments aloft, the five astronauts tested (astronaut 1 did not participate) were virtually symptom free, thus demonstrating lower susceptibility aloft than in preflight and postflight tests on the ground when symptoms were always elicited. Inasmuch as the eyes were covered and the canalicular stimuli were the same aloft as on the ground, it would appear that lifting the stimulus to the otolith organs due to gravity was an important factor in reducing susceptibility to motion sickness even though the transient stimuli generated under the test conditions were substantial and abnormal in pattern. Some of the astronauts experienced motion sickness under operational conditions aloft or after splashdown, but attention is centered chiefly on symptoms manifested in zero gravity. None of the Skylab-II crew (astronauts 1 to 3) was motion sick aloft. Astronaut 6 of the Skylab-III crew (astronauts 4 to 6) experienced motion sickness within an hour after transition into orbit; this constitutes the earliest such diagnosis on record under orbital flight conditions. The eliciting stimuli were associated with head and body movements, and astronaut 6 obtained relief by avoiding such movements and by one dose of the drug combination 1-scopolamine 0.35 mg + d-amphetamine 5.0 mg. All three astronauts of Skylab-III experienced motion sickness in the workshop where astronaut 6 was most susceptible and astronaut 4, least susceptible. The higher susceptibility of SL-III crewmen in the workshop, as compared with SL-II crewmen, may be attributable to the fact that they were based in the command module less than one-third as long as SL-II crewmen. The unnatural movements, often resembling acrobatics, permitted in the open spaces of the workshop revealed the great potentialities in weightlessness for generating complex interactions of abnormal or unusual vestibular and visual stimuli. Symptoms were controlled by body restraint and by drugs, but high susceptibility to motion sickness persisted for 3 days and probably much longer; restoration was complete on MD 7. From the foregoing statements it is clear that on and after MD 8 the susceptibility of SL-II and SL-III crewmen to motion sickness under experimental conditions was indistinguishable. The role played by the acquisition of adaptation effects prior to MD 8 is less clear and is a subject to be discussed.  相似文献   
96.
Adaptation to the weightless state and readaptation after space flight to the 1-G environment on the ground are accompanied by various transitory symptoms of vestibular instability, kinetosis, and illusory sensations. Aside from the problem of how to treat and if possible prevent such symptoms, they offer a clue to a better understanding of normal vestibular functions. Weightlessness is a powerful new "tool" of vestibular research. Graybiel reported as early as 1952 that human subjects observed the illusion that a real target and the visual afterimage seemed to raise in the visual field during centrifugation when the subjects were looking toward the axis of rotation (oculogravic illusion). In aircraft parabolic-flight weightlessness, human subjects observed that fixed real targets appeared to have moved downward while visual afterimages appeared to have moved upward (oculoagravic illusion). It can be shown by electronystagmography as well as by a method employing double afterimages that part of this illusion is caused by eye movements that are triggered by the changing input from the otolith system. Another part of the illusion is based on a change of the subjective horizontal and must be caused by convergence of vestibular and visual impulses "behind" the eyes. This part was measured independently of the first one by using a new method. Eye movements could be prevented during these experiments by optical fixation with the right eye on a target at the end of a 24-in. long tube which was rigidly attached parallel to the longitudinal axis of an aircraft. At the same time the subject tried to line up a shorter tube, which was pivoting around his left eye, with the subjective horizon.  相似文献   
97.
The facts presented represent, for convenience, a composite clinical picture of the three crewmen aboard Skylab II as observed by me.  相似文献   
98.
Blood pressure at 30-sec intervals, heart rate, and percentage increase in leg volume continuously were recorded during a 25-min protocol in the M092 Inflight Lower Body Negative Pressure (LBNP) experiment carried out in the first manned Skylab mission. These data were collected during six tests on each crewman over a 5-month preflight period. The protocol consisted of a 5-min resting control period, 1 min at -8, 1 min at -16, 3 min at -30, 5 min at -40, and 5 min at -50 mm Hg LBNP. A 5-min recovery period followed. Inflight tests were performed at approximately 3-day intervals through the 28-day mission. Individual variations in cardiovascular responses to LBNP during the preflight period continued to be demonstrated in the inflight tests. Measurements of the calf indicated that a large volume of fluid was shifted out of the legs early in the flight and that a slower decrease in leg volume, presumably due to loss of muscle tissue, continued throughout the flight. Resting heart rates tended to be low early in the flight and to increase slightly as the flight progressed. Resting blood pressure varied but usually was characterized by slightly elevated systolic blood pressure, lower diastolic pressure, and higher pulse pressures than during preflight examinations. During LBNP inflight a much greater increase in leg volume occurred than in preflight tests. Large increases occurred even at the smallest levels of negative pressure, suggesting that the veins of the legs were relatively empty at the beginning of the LBNP. The greater volume of blood pooled in the legs was associated with greater increases of heart rate and diastolic pressure and larger falls of systolic and pulse pressure than seen in preflight tests. The LBNP protocol represented a greater stress inflight, and on three occasions it was necessary to stop the test early because of impending syncopal reactions. LBNP responses inflight appeared to predict the degree of postflight orthostatic intolerance. Postflight responses to LBNP during the first 48 hours were characterized by marked elevations of heart rate and instability of blood pressure. In addition, systolic and diastolic pressures were typically elevated considerably both at rest and also during stress. The time required for cardiovascular responses to return to preflight levels was much slower than in the case of Apollo crewmen.  相似文献   
99.
Red-cell mass determinations were performed before and after the first two Skylab missions. The data showed a 14% mean decrease in red-cell mass after the 28-day mission and a 12% mean decrease after the 59-day mission. The red-cell mass returned to premission levels more slowly after the shorter (28-day) than after the longer mission. Plasma volume decreases were found after each mission. with the crew from the longer mission showing the greater change (13% vs. 8.4%). Postmission decreases in red-cell mass and plasma volume have been a general finding in crewmen who return from short or long spaceflight.  相似文献   
100.
The influence of geometry and operating conditions of the centrifugal compressor stage on the radial gas force is determined on the basis of the theoretical method and calculation program using experimental boundary conditions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号