全文获取类型
收费全文 | 8444篇 |
免费 | 12篇 |
国内免费 | 27篇 |
专业分类
航空 | 4364篇 |
航天技术 | 2822篇 |
综合类 | 202篇 |
航天 | 1095篇 |
出版年
2021年 | 54篇 |
2019年 | 49篇 |
2018年 | 103篇 |
2016年 | 50篇 |
2014年 | 135篇 |
2013年 | 191篇 |
2012年 | 180篇 |
2011年 | 266篇 |
2010年 | 175篇 |
2009年 | 293篇 |
2008年 | 348篇 |
2007年 | 198篇 |
2006年 | 190篇 |
2005年 | 201篇 |
2004年 | 178篇 |
2003年 | 251篇 |
2002年 | 250篇 |
2001年 | 315篇 |
2000年 | 165篇 |
1999年 | 205篇 |
1998年 | 255篇 |
1997年 | 181篇 |
1996年 | 239篇 |
1995年 | 298篇 |
1994年 | 270篇 |
1993年 | 165篇 |
1992年 | 199篇 |
1991年 | 117篇 |
1990年 | 107篇 |
1989年 | 217篇 |
1988年 | 102篇 |
1987年 | 108篇 |
1986年 | 101篇 |
1985年 | 281篇 |
1984年 | 224篇 |
1983年 | 193篇 |
1982年 | 203篇 |
1981年 | 275篇 |
1980年 | 98篇 |
1979年 | 78篇 |
1978年 | 89篇 |
1977年 | 70篇 |
1976年 | 67篇 |
1975年 | 89篇 |
1974年 | 70篇 |
1973年 | 62篇 |
1972年 | 86篇 |
1971年 | 75篇 |
1970年 | 63篇 |
1969年 | 64篇 |
排序方式: 共有8483条查询结果,搜索用时 15 毫秒
471.
Michihiro Takami Motohide Tamura Keigo Enya Takafumi Ootsubo Misato Fukagawa Mitsuhiko Honda Yoshiko Okamoto Shigehisa Sako Takuya Yamashita Sunao Hasegawa Hirokazu Kataza Hideo Matsuhara Takao Nakagawa Javier R. Goicoechea Kate Isaak Bruce Swinyard 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2010
472.
Elisa Maria Alessi Gerard Gómez Josep J. Masdemont 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2010
The purpose of this work is to compute transfer trajectories from a given Low Earth Orbit (LEO) to a nominal Lissajous quasi-periodic orbit either around the point L1 or the point L2 in the Earth–Moon system. This is achieved by adopting the Circular Restricted Three-Body Problem (CR3BP) as force model and applying the tools of Dynamical Systems Theory. 相似文献
473.
46 magnetosheath crossing events from the two years (2001.2-2003.1) of Cluster magnetic field measurements are identified and used to investigate the characters of the magnetic field fluctuations in the regions of undisturbed solar wind, foreshock, magnetosheath. The preliminary results indicate the properties of the plasma turbulence in the magnetosheath are strongly controlled by IMF orientation with respect to the bow shock normal. The amplitude of the magnetic field magnitude and direction variations behind quasi-parallel bow shock are larger than those behind quasi-perpendicular bow shock. Almost purely compressional waves are found in quasi-perpendicular magnetosheath. 相似文献
474.
M.O. Riazantseva G.N. Zastenker J.D. Richardson 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2005,35(12):2147-2151
We investigate properties of large (>20%) and sharp (<10 min) solar wind ion flux changes using INTERBALL-1 and WIND plasma and magnetic field measurements from 1996 to 1999. These ion flux changes are the boundaries of small-scale and middle-scale solar wind structures. We describe the behavior of the solar wind velocity, temperature and interplanetary magnetic field (IMF) during these sudden flux changes. Many of the largest ion flux changes occur during periods when the solar wind velocity is nearly constant, so these are mainly plasma density changes. The IMF magnitude and direction changes at these events can be either large or small. For about 55% of the ion flux changes, the sum of the thermal and magnetic pressure are in balance across the boundary. In many of the other cases, the thermal pressure change is significantly more than the magnetic pressure change. We also attempted to classify the types of discontinuities observed. 相似文献
475.
Chao-Song Huang J.C. Foster K. Yumoto J.L. Chau O. Veliz 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2005,36(12):2407-2412
It is well known that the solar wind can significantly affect high-latitude ionospheric dynamics. However, the effects of the solar wind on the middle- and low-latitude ionosphere are much less studied. In this paper, we report observations that large perturbations in the middle- and low-latitude ionosphere are well correlated with solar wind variations. In one event, a significant (20–30%) decrease of the midlatitude ionospheric electron density over a large latitudinal range was related to a sudden drop in the solar wind pressure and a northward turning of the interplanetary magnetic field, and the density decrease became larger at lower latitudes. In another event, periodic perturbations in the dayside equatorial ionospheric E × B drift and electrojet were closely associated with variations in the interplanetary electric field. Since the solar wind is always changing with time, it can be a very important and common source of ionospheric perturbations at middle- and low-latitudes. The relationship between solar wind variations and significant ionospheric perturbations has important applications in space weather. 相似文献
476.
E. Echer W.D. Gonzalez A. Dal Lago L.E.A. Vieira F.L. Guarnieri A.L.C. Gonzalez N.J. Schuch 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2005,36(12):2313-2317
In this work a study is performed on the correlation between fast forward interplanetary shock parameters at 1 Astronomical Unit and sudden impulse (SI) amplitudes in the H-component of the geomagnetic field, for periods of solar activity maximum (year 2000) and minimum (year 1995–1996). Solar wind temperature, density and speed, and total magnetic field, were taken to calculate the static pressures (thermal and magnetic) both in the upstream and downstream sides of the shocks. The variations of the solar wind parameters and pressures were then correlated with SI amplitudes. The solar wind speed variations presented good correlations with sudden impulses, with correlation coefficients larger than 0.70 both in solar maximum and solar minimum, whereas the solar wind density presented very low correlation. The parameter better correlated with SI was the square root dynamic pressure variation, showing a larger correlation during solar maximum (r = 0.82) than during solar minimum (r = 0.77). The correlations of SI with square root thermal and magnetic pressure were smaller than with the dynamic pressure, but they also present a good correlation, with r > 0.70 during both solar maximum and minimum. Multiple linear correlation analysis of SI in terms of the three pressure terms have shown that 78% and 85% of the variance in SI during solar maximum and minimum, respectively, are explained by the three pressure variations. Average sudden impulse amplitude was 25 nT during solar maximum and 21 nT during solar minimum, while average square root dynamic pressure variation is 1.20 and 0.86 nPa1/2 during solar maximum and minimum, respectively. Thus on average, fast forward interplanetary shocks are 33% stronger during solar maximum than during solar minimum, and the magnetospheric SI response has amplitude 20% higher during solar maximum than during solar minimum. A comparison with theoretical predictions (Tsyganenko’s model corrected by Earth’s induced currents) of the coefficient of sudden impulse change with solar wind dynamic pressure variation showed excellent agreement, with values around 17 nT/nPa1/2. 相似文献
477.
Noise in wireless systems from solar radio bursts 总被引:1,自引:0,他引:1
L.J. Lanzerotti D.E. Gary G.M. Nita D.J. Thomson C.G. Maclennan 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2005,36(12):2253-2257
Solar radio bursts were first discovered as result of their interference in early defensive radar systems during the Second World War (1942). Such bursts can still affect radar systems, as well as new wireless technologies. We have investigated a forty-year record of solar radio burst data (1960–1999) as well as several individual radio events in the 23rd solar cycle. This paper reviews the results of a portion of this research. Statistically, for frequencies f 1 GHz (near current wireless bands), there can be a burst with amplitudes >103 solar flux units (SFU; 1 SFU = 10−22 W/m2) every few days during solar maximum conditions, and such burst levels can produce problems in contemporary wireless systems. 相似文献
478.
S.J. Wang D. Maia M. Pick G. Aulanier J.-M. Malherbe J.-P. Delaboudinire 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2005,36(12):2273
We present our research on a fast and decelerating partial halo coronal mass ejection (CME) event detected in multi-wavelengths in the chromosphere and the corona on 14 October, 1999. The event involved a whole complex active area which spanned more than 40° of heliolongitude. It included a strong solar flare (XI/1N) and a complex eruptive filament within an active region of the entire complex. Especially, several radio sources were detected in the decimetric range prior to the CME by the Nançay Radioheliograph (NRH). A linear force-free field extrapolation of the Michelson Doppler Imager (MDI) magnetogram was performed to calculate the magnetic topology of the complex prior to the triggering of the event. The presence of a coronal null point combined with the occurrence of two distant and nearly simultaneous radio sources put strong arguments in favor of the generalized breakout model for the triggering of the eruption. The analysis of the subsequent development of the event suggests that large interconnecting loops were ejected together with the CME. 相似文献
479.
D. T. Young J. L. Burch R. G. Gomez A. De Los Santos G. P. Miller P. Wilson N. Paschalidis S. A. Fuselier K. Pickens E. Hertzberg C. J. Pollock J. Scherrer P. B. Wood E. T. Donald D. Aaron J. Furman D. George R. S. Gurnee R. S. Hourani A. Jacques T. Johnson T. Orr K. S. Pan S. Persyn S. Pope J. Roberts M. R. Stokes K. J. Trattner J. M. Webster 《Space Science Reviews》2016,199(1-4):407-470
480.
J. B. Blake B. H. Mauk D. N. Baker P. Carranza J. H. Clemmons J. Craft W. R. Crain A. Crew Y. Dotan J. F. Fennell R. H. Friedel L. M. Friesen F. Fuentes R. Galvan C. Ibscher A. Jaynes N. Katz M. Lalic A. Y. Lin D. M. Mabry T. Nguyen C. Pancratz M. Redding G. D. Reeves S. Smith H. E. Spence J. Westlake 《Space Science Reviews》2016,199(1-4):309-329