首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18899篇
  免费   74篇
  国内免费   139篇
航空   10062篇
航天技术   5750篇
综合类   318篇
航天   2982篇
  2021年   163篇
  2018年   219篇
  2016年   156篇
  2014年   447篇
  2013年   538篇
  2012年   439篇
  2011年   624篇
  2010年   440篇
  2009年   771篇
  2008年   824篇
  2007年   407篇
  2006年   468篇
  2005年   445篇
  2004年   449篇
  2003年   556篇
  2002年   495篇
  2001年   597篇
  2000年   401篇
  1999年   475篇
  1998年   458篇
  1997年   348篇
  1996年   418篇
  1995年   486篇
  1994年   481篇
  1993年   361篇
  1992年   352篇
  1991年   252篇
  1990年   247篇
  1989年   431篇
  1988年   206篇
  1987年   240篇
  1986年   245篇
  1985年   650篇
  1984年   532篇
  1983年   419篇
  1982年   489篇
  1981年   616篇
  1980年   248篇
  1979年   188篇
  1978年   189篇
  1977年   146篇
  1976年   155篇
  1975年   197篇
  1974年   180篇
  1973年   161篇
  1972年   188篇
  1971年   148篇
  1970年   144篇
  1969年   148篇
  1967年   142篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
Imaging is the most widely applicable single means of exploring the outer planets and their satellites and also complements other planet-oriented instruments. Imaging generally is more effectively carried out from a three-axis stabilized spacecraft than from a spinning one.Both specific experimental and broader exploratory goals must be recognized. Photography of Jupiter from terrestrial telescopes has revealed features which were neither predictable or predicted. Close-up imaging from fly-bys and orbiters affords the opportunity for discovery of atmospheric phenomena on the outer planets forever beyond the reach of terrestrial laboratories and intuition. On the other hand, a large number of specific applications of close-up imaging to study the giant planets are suggested by experience in photography from Earth and Mars orbit, and by ground-based telescopic studies of Jupiter and Saturn. Photographic observations of horizontal and vertical cloud structure at both global and finer scale, and motions and other time changes, will be essential for the study of atmospheric circulation. Size and composition of cloud particles also is a credible objective of fly-by and orbiter missions carrying both imaging and photo-polarimeter experiments.The satellites of the outer planets actually constitute three distinct classes: lunar-sized objects, asteroidal-sized objects, and particulate rings. Imaging promises to be the primary observational tool for each category with results that could impact scientific thinking in the late 70's and 80's as significantly as has close-up photography of Mars and the Moon in the last 10 yr.Finally, it should be recognized that photography occupies a unique role in the interaction between science and the popular mind. This popular, educational aspect of imaging constitutes a unique aspect of 20th Century culture. Imaging therefore is not only a primary basis for scientific discovery in the exploration of the outer planets, but an important human endeavor of enduring significance.Contribution No. 2163 of the Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California 91109.This is one of the publications by the Science Advisory Group.  相似文献   
992.
The remote sensing of low frequency nonthermal radio emission is the astronomy of field and particle phenomena. Observations conducted from space lead to information about the composition and dynamic processes occurring in planetary magnetospheres as well as within the interplanetary and interstellar medium. The potential of this technique is demonstrated by considering observations obtained from Earth orbit missions.This is one of the publications by the Science Advisory Group.  相似文献   
993.
Certain fundamental scientific problems of a cosmological as well as cosmogonic character, may be solved by the insertion of entry probes into the atmospheres of the outer planets. It is recommended that attempts be made to determine the elemental and isotopic abundances of H, D, He3, He4, C, N, O, S, and the rare gas elements. These determinations should cast much light on the processes which participated in the assembly of the giant planets. This would give powerful boundary conditions on theories of the origin of the solar system, and would also give additional experimental information bearing on cosmology.This is one of the publications by the Science Advisory Group.  相似文献   
994.
995.
Studies evaluating the transport coefficients for energetic particles in interplanetary space are described in relation to particle data.In position space, the main mode of propagation is along field lines but perpendicular diffusion and drift motion is also possible. Diffusion coefficients based on interplanetary magnetic field data are either derived from quasi-linear, adiabatic theory or this theory corrected for finite scattering near 90° pitch angle or by numerical techniques. Relevant particle data includes solar proton event time profile and anisotropy measurements. In general, when Fokker-Planck transport equation solutions are fitted to particle data, the parallel diffusion coefficients obtained still appear rather larger than those given by theoretical estimates. Perpendicular diffusion is shown to be due to field line wandering and random drift motion effects. The importance of drift motion in cosmic ray modulation theory is mentioned.Although much emphasis is currently placed upon shock acceleration in CIR's, statistical acceleration in interplanetary space must be considered. Energetic particles may gain energy from longitudinal waves and cyclotron resonance interactions. Analytical and numerical estimates of the energy space diffusion coefficients are considered. Some reveal a surprising importance to this statistical acceleration and can explain a variety of data.Presented at the Fifth International Symposium on Solar-Terrestrial Physics, held at Ottawa, Canada, May 1982.  相似文献   
996.
This review summarizes some of the recent results obtained by ground-based detectors recording cosmic-ray intensity at high energies (>1 GeV) for almost five decades. The long-term changes observed in the isotropic and anisotropic components of cosmic-ray intensity are presented. It is noted in particular that significant changes occurred in the characteristics of cosmic-ray modulation after the 1969–70 period. Most of these are definitively related to the reversal of the solar poloidal field; their characteristics are described with a view to relate these with the heliospheric configuration. Anomalies in the variational characteristics of both isotropic and anisotropic parts of cosmic ray intensity, noticed particularly during the period of very high speed solar wind streams, are discussed in detail. Phenomena with periodicities of 11 and 22 years occur simultaneously; their relative importance is derived and related to interplanetary variables. Suggestions for further studies, as needed, are also incorporated.Presented at the Fifth International Symposium on Solar-Terrestrial Physics, held at Ottawa, Canada, May 1982.  相似文献   
997.
We review recent progress in the understanding of the IMF control on the Earth's magnetosphere through the reconnection process. Major points include, (1) the identification of the magnetopause structure under the southward IMF polarity to be the rotational discontinuity and the resulting inference that the reconnection line is formed in the equatorial region, and (2) the confirmation from several observational aspects that under the northward IMF the reconnection takes place in the polar cusp. The point (1) is consistent with the observed correlations of geomagnetic indices with IMF but raises an important theoretical issue, and the point (2) is accompanied by an interesting issue of explaining why the polar cap electron precipitation is more energetic under such IMF conditions. Critical studies have reaffirmed the view that the energy supplied by reconnection is partly transported directly to the ionosphere to drive the DP-2 type current system but at the same time it is partly stored in the magnetic field of the tail to be unloaded 0.5 1 hr later to produce the expansion phase of substorm.Presented at the Fifth International Symposium on Solar-Terrestrial Physics, held at Ottawa, Canada, May 1982.  相似文献   
998.
Head-down and head-up [correction of heat-up] tilted bedrest (5 degrees) and head out water immersion (HOWI) for 6 hr were compared. Parameters: Cardiac output (rebreathing method), blood pressure (arm cuff), forearm blood flow (venous occlusion plethysmography), total peripheral (TPR), and forearm vascular (FVR) resistances, Hct, Hb, relative plasma volume (PV) changes, and plasma catecholamines (single-isotope assay). During HOWI there was as expected a decrement in TPR, FVR, Mean arterial pressure (MAP, from 100 to 80 mmHg), Hct, and PV, and--as a new finding--catecholamines, which were 30-50% lower compared with both +5 and -5 degrees bedrest. During head down tilt, MAP was elevated (to 100-110 mmHg) and catecholamines did not fall, while TPR and EVR slowly decreased over 6 hr. HOWI is a stronger stimulus than -5 degrees bedrest, probably because HOWI elevates central venous pressure more markedly emptying the peripheral veins, while bedrest permits a distension of veins, which induces an increase in sympathetic nervous activity.  相似文献   
999.
Work under the heading of Laboratory Plasma Spectroscopy may be conveniently separated into three classes depending on the extent to which the interaction of the emitting atoms with their plasma environment is central to the investigation. Zero order, the longest established use of laboratory plasmas in connection with astrophysics, concerns the use of hot plasmas for the excitation, measurement, and identification of the spectra of highly-stripped ions. In such work the properties of the plasma itself are usually of secondary importance. In first-order, plasma spectroscopy is used to determine fundamental atomic data concerned with the interaction of an atom with a single particle, usually either a photon or an electron, i.e.: the determination of oscillator strengths and collision cross-sections. Finally, higher-order processes in which the plasma nature of the surrounding medium is most relevant concern the study of line-shapes, and related topics such as the excitation of satellite spectral features by plasma oscillations. Developments in plasma diagnostic techniques in the last five years have greatly extended the scope of the second and third categories and have yielded much astrophysically important information from laboratory studies. Recent advances in these areas are reviewed.  相似文献   
1000.
The variability of the X-ray spectrum of the discrete source Cyg XR-1 (α = 19h 56m δ = +35°.1) is reviewed. The variations observed in the energy region accessible to balloon borne detectors (energies greater than 20 keV) can be explained by assuming them to be caused by the eclipsing properties of a binary system. It is suggested that the system is composed of a source of small angular extent having a spectrum similar to that of a black body at approximately 1.5 × 108 K (kT= 12.5 keV) and a non X-radiating companion which eclipses it at intervals of 2.9850 days. The system would be surrounded by an X-radiating plasma whose photon flux between 1 and 100 keV can be approximated by a power law spectrum whose exponent is — 1.7.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号