首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7828篇
  免费   68篇
  国内免费   55篇
航空   3938篇
航天技术   2784篇
综合类   92篇
航天   1137篇
  2021年   60篇
  2018年   91篇
  2017年   80篇
  2016年   58篇
  2014年   142篇
  2013年   203篇
  2012年   168篇
  2011年   276篇
  2010年   204篇
  2009年   282篇
  2008年   371篇
  2007年   213篇
  2006年   218篇
  2005年   220篇
  2004年   161篇
  2003年   243篇
  2002年   159篇
  2001年   249篇
  2000年   170篇
  1999年   207篇
  1998年   225篇
  1997年   177篇
  1996年   218篇
  1995年   257篇
  1994年   242篇
  1993年   151篇
  1992年   174篇
  1991年   98篇
  1990年   94篇
  1989年   191篇
  1988年   89篇
  1987年   84篇
  1986年   87篇
  1985年   250篇
  1984年   201篇
  1983年   174篇
  1982年   173篇
  1981年   242篇
  1980年   78篇
  1979年   58篇
  1978年   73篇
  1977年   69篇
  1976年   55篇
  1975年   84篇
  1974年   53篇
  1973年   54篇
  1972年   74篇
  1971年   57篇
  1970年   55篇
  1969年   52篇
排序方式: 共有7951条查询结果,搜索用时 15 毫秒
301.
The Radio Plasma Imager investigation on the IMAGE spacecraft   总被引:1,自引:0,他引:1  
Reinisch  B.W.  Haines  D.M.  Bibl  K.  Cheney  G.  Galkin  I.A.  Huang  X.  Myers  S.H.  Sales  G.S.  Benson  R.F.  Fung  S.F.  Green  J.L.  Boardsen  S.  Taylor  W.W.L.  Bougeret  J.-L.  Manning  R.  Meyer-Vernet  N.  Moncuquet  M.  Carpenter  D.L.  Gallagher  D.L.  Reiff  P. 《Space Science Reviews》2000,91(1-2):319-359
Radio plasma imaging uses total reflection of electromagnetic waves from plasmas whose plasma frequencies equal the radio sounding frequency and whose electron density gradients are parallel to the wave normals. The Radio Plasma Imager (RPI) has two orthogonal 500-m long dipole antennas in the spin plane for near omni-directional transmission. The third antenna is a 20-m dipole along the spin axis. Echoes from the magnetopause, plasmasphere and cusp will be received with the three orthogonal antennas, allowing the determination of their angle-of-arrival. Thus it will be possible to create image fragments of the reflecting density structures. The instrument can execute a large variety of programmable measuring options at frequencies between 3 kHz and 3 MHz. Tuning of the transmit antennas provides optimum power transfer from the 10 W transmitter to the antennas. The instrument can operate in three active sounding modes: (1) remote sounding to probe magnetospheric boundaries, (2) local (relaxation) sounding to probe the local plasma frequency and scalar magnetic field, and (3) whistler stimulation sounding. In addition, there is a passive mode to record natural emissions, and to determine the local electron density, the scalar magnetic field, and temperature by using a thermal noise spectroscopy technique.  相似文献   
302.
Green  J.L.  Benson  R.F.  Fung  S.F.  Taylor  W.W.L.  Boardsen  S.A.  Reinisch  B.W.  Haines  D.M.  Bibl  K.  Cheney  G.  Galkin  I.A.  Huang  X.  Myers  S.H.  Sales  G.S.  Bougeret  J.-L.  Manning  R.  Meyer-Vernet  N.  Moncuquet  M.  Carpenter  D.L.  Gallagher  D.L.  Reiff  P.H. 《Space Science Reviews》2000,91(1-2):361-389
The Radio Plasma Imager (RPI) will be the first-of-its kind instrument designed to use radio wave sounding techniques to perform repetitive remote sensing measurements of electron number density (N e) structures and the dynamics of the magnetosphere and plasmasphere. RPI will fly on the Imager for Magnetopause-to-Aurora Global Exploration (IMAGE) mission to be launched early in the year 2000. The design of the RPI is based on recent advances in radio transmitter and receiver design and modern digital processing techniques perfected for ground-based ionospheric sounding over the last two decades. Free-space electromagnetic waves transmitted by the RPI located in the low-density magnetospheric cavity will be reflected at distant plasma cutoffs. The location and characteristics of the plasma at those remote reflection points can then be derived from measurements of the echo amplitude, phase, delay time, frequency, polarization, Doppler shift, and echo direction. The 500 m tip-to-tip X and Y (spin plane) antennas and 20 m Z axis antenna on RPI will be used to measures echoes coming from distances of several R E. RPI will operate at frequencies between 3 kHz to 3 MHz and will provide quantitative N e values from 10–1 to 105 cm–3. Ray tracing calculations, combined with specific radio imager instrument characteristics, enables simulations of RPI measurements. These simulations have been performed throughout an IMAGE orbit and under different model magnetospheric conditions. They dramatically show that radio sounding can be used quite successfully to measure a wealth of magnetospheric phenomena such as magnetopause boundary motions and plasmapause dynamics. The radio imaging technique will provide a truly exciting opportunity to study global magnetospheric dynamics in a way that was never before possible.  相似文献   
303.
Electro Energy Inc. (EEI) is developing high power, long life, bipolar nickel-metal hydride batteries for aerospace applications. Bipolar nickel-metal hydride designs allow for high energy and high power designs with a 25 percent reduction in both weight and volume as compared to prismatic and/or cylindrical Ni-MH designs. Utilizing a sealed wafer cell design EEI has demonstrated a 1.2 kW/kg power capability. Prototype designs have achieved 70 Wh/kg. Designs studies show 80 Wh/kg are achievable with EEI's state-of-the-art technology. The sealed wafer cell is the building block for EEI's high power and high voltage bipolar batteries making the assembly easy and significantly lower in cost. Satellite and aircraft batteries are being developed which provide high power and long life. Sealed cells now show excellent rate capability and life. Cells tested in a low earth orbit (LEO) cycle have reached 9000 cycles and continue on test. High power, bipolar battery designs are ideal in applications where using conventional aerospace battery technology would require excessive capacity; weight and volume, thereby reducing usable payload on the vehicle  相似文献   
304.
Space-time adaptive processing (STAP) and related adaptive array techniques hold tremendous potential for improving sensor performance by exploiting signal diversity. Such methods have important application in radar, sonar, and communication systems. Recent advances in digital signal processing technology now provide the computational means to field STAP-based systems. The objective of this special collection of papers is to examine the current state-of-the art in STAP technology and explore the remaining obstacles, practical issues and novel techniques required to implement STAP-based radar, sonar or communication systems  相似文献   
305.
A Twin-CME Scenario for Ground Level Enhancement Events   总被引:2,自引:0,他引:2  
Ground Level Enhancement (GLEs) events are extreme Solar Energetic Particle (SEP) events. Protons in these events often reach ~GeV/nucleon. Understanding the underlying particle acceleration mechanism in these events is a major goal for Space Weather studies. In Solar Cycle 23, a total of 16 GLEs have been identified. Most of them have preceding CMEs and in-situ energetic particle observations show some of them are enhanced in ICME or flare-like material. Motivated by this observation, we discuss here a scenario in which two CMEs erupt in sequence during a short period of time from the same Active Region (AR) with a pseudo-streamer-like pre-eruption magnetic field configuration. The first CME is narrower and slower and the second CME is wider and faster. We show that the magnetic field configuration in our proposed scenario can lead to magnetic reconnection between the open and closed field lines that drape and enclose the first CME and its driven shock. The combined effect of the presence of the first shock and the existence of the open close reconnection is that when the second CME erupts and drives a second shock, one finds both an excess of seed population and an enhanced turbulence level at the front of the second shock than the case of a single CME-driven shock. Therefore, a more efficient particle acceleration will occur. The implications of our proposed scenario are discussed.  相似文献   
306.
307.
The ChemCam instrument on the Mars Science Laboratory rover Curiosity will use laser-induced breakdown spectroscopy (LIBS) to analyze major and minor element chemistry from sub-millimeter spot sizes, at ranges of ~1.5–7?m. To interpret the emission spectra obtained, ten calibration standards will be carried on the rover deck. Graphite, Ti?metal, and four glasses of igneous composition provide primary, homogeneous calibration targets for the laser. Four granular ceramic targets have been added to provide compositions closer to soils and sedimentary materials like those expected at the Gale Crater field site on Mars. Components used in making these ceramics include basalt, evaporite, and phyllosilicate materials that approximate the chemical compositions of detrital and authigenic constituents of clastic and evaporite sediments, including the elevated sulfate contents present in many Mars sediments and soils. Powdered components were sintered at low temperature (800?°C) with a small amount (9?wt.%) of lithium tetraborate flux to produce ceramics that retain volatile sulfur yet are durable enough for the mission. The ceramic targets are more heterogeneous than the pure element and homogenous glass standards but they provide standards with compositions more similar to the sedimentary rocks that will be Curiosity’s prime targets at Gale Crater.  相似文献   
308.
X-radiation from energetic electrons is the prime diagnostic of flare-accelerated electrons. The observed X-ray flux (and polarization state) is fundamentally a convolution of the cross-section for the hard X-ray emission process(es) in question with the electron distribution function, which is in turn a function of energy, direction, spatial location and time. To address the problems of particle propagation and acceleration one needs to infer as much information as possible on this electron distribution function, through a deconvolution of this fundamental relationship. This review presents recent progress toward this goal using spectroscopic, imaging and polarization measurements, primarily from the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI). Previous conclusions regarding the energy, angular (pitch angle) and spatial distributions of energetic electrons in solar flares are critically reviewed. We discuss the role and the observational evidence of several radiation processes: free-free electron-ion, free-free electron-electron, free-bound electron-ion, photoelectric absorption and Compton backscatter (albedo), using both spectroscopic and imaging techniques. This unprecedented quality of data allows for the first time inference of the angular distributions of the X-ray-emitting electrons and improved model-independent inference of electron energy spectra and emission measures of thermal plasma. Moreover, imaging spectroscopy has revealed hitherto unknown details of solar flare morphology and detailed spectroscopy of coronal, footpoint and extended sources in flaring regions. Additional attempts to measure hard X-ray polarization were not sufficient to put constraints on the degree of anisotropy of electrons, but point to the importance of obtaining good quality polarization data in the future.  相似文献   
309.
ARTEMIS Mission Design   总被引:2,自引:0,他引:2  
The ARTEMIS mission takes two of the five THEMIS spacecraft beyond their prime mission objectives and reuses them to study the Moon and the lunar space environment. Although the spacecraft and fuel resources were tailored to space observations from Earth orbit, sufficient fuel margins, spacecraft capability, and operational flexibility were present that with a circuitous, ballistic, constrained-thrust trajectory, new scientific information could be gleaned from the instruments near the Moon and in lunar orbit. We discuss the challenges of ARTEMIS trajectory design and describe its current implementation to address both heliophysics and planetary science objectives. In particular, we explain the challenges imposed by the constraints of the orbiting hardware and describe the trajectory solutions found in prolonged ballistic flight paths that include multiple lunar approaches, lunar flybys, low-energy trajectory segments, lunar Lissajous orbits, and low-lunar-periapse orbits. We conclude with a discussion of the risks that we took to enable the development and implementation of ARTEMIS.  相似文献   
310.
刘德元  刘昊  Frank L LEWIS 《航空学报》2021,42(2):324296-324296
针对尾座式无人飞行器编队在执行器故障、严重的非线性和耦合性、参数不确定性、外界扰动等影响下的容错控制问题进行了研究。提出了一种鲁棒容错编队控制方法来实现一群尾座式无人飞行器在执行器故障情况下的期望编队飞行。所构建的控制器由2部分组成:标称控制器和干扰补偿控制器。设计标称控制器使系统实现期望的控制性能,利用干扰补偿控制器抑制多种不确定性和执行器故障的影响。通过理论分析证明了系统的鲁棒稳定性,并通过数值仿真验证了算法的有效性。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号