全文获取类型
收费全文 | 7828篇 |
免费 | 68篇 |
国内免费 | 55篇 |
专业分类
航空 | 3938篇 |
航天技术 | 2784篇 |
综合类 | 92篇 |
航天 | 1137篇 |
出版年
2021年 | 60篇 |
2018年 | 91篇 |
2017年 | 80篇 |
2016年 | 58篇 |
2014年 | 142篇 |
2013年 | 203篇 |
2012年 | 168篇 |
2011年 | 276篇 |
2010年 | 204篇 |
2009年 | 282篇 |
2008年 | 371篇 |
2007年 | 213篇 |
2006年 | 218篇 |
2005年 | 220篇 |
2004年 | 161篇 |
2003年 | 243篇 |
2002年 | 159篇 |
2001年 | 249篇 |
2000年 | 170篇 |
1999年 | 207篇 |
1998年 | 225篇 |
1997年 | 177篇 |
1996年 | 218篇 |
1995年 | 257篇 |
1994年 | 242篇 |
1993年 | 151篇 |
1992年 | 174篇 |
1991年 | 98篇 |
1990年 | 94篇 |
1989年 | 191篇 |
1988年 | 89篇 |
1987年 | 84篇 |
1986年 | 87篇 |
1985年 | 250篇 |
1984年 | 201篇 |
1983年 | 174篇 |
1982年 | 173篇 |
1981年 | 242篇 |
1980年 | 78篇 |
1979年 | 58篇 |
1978年 | 73篇 |
1977年 | 69篇 |
1976年 | 55篇 |
1975年 | 84篇 |
1974年 | 53篇 |
1973年 | 54篇 |
1972年 | 74篇 |
1971年 | 57篇 |
1970年 | 55篇 |
1969年 | 52篇 |
排序方式: 共有7951条查询结果,搜索用时 15 毫秒
121.
Sarles F.W. Stanley A.G. Roberge J.K. Godfrey B.W. 《IEEE transactions on aerospace and electronic systems》1973,(6):921-924
For direct measurement of the integrated radiation dose experienced in Earth synchronous orbit, p-i-n diodes were flown as radiation dosimeters on LES-6. The diode, which has a lifetime of 10-4 seconds in the intrinsic region, was originally developed as a neutron dosimeter, but can detect 1-MeV electron fluences as low as 1013 e·cm-2. Observations over three years in orbit are presented. 相似文献
122.
F. Bagenal A. Adriani F. Allegrini S. J. Bolton B. Bonfond E. J. Bunce J. E. P. Connerney S. W. H. Cowley R. W. Ebert G. R. Gladstone C. J. Hansen W. S. Kurth S. M. Levin B. H. Mauk D. J. McComas C. P. Paranicas D. Santos-Costa R. M. Thorne P. Valek J. H. Waite P. Zarka 《Space Science Reviews》2017,213(1-4):219-287
In July 2016, NASA’s Juno mission becomes the first spacecraft to enter polar orbit of Jupiter and venture deep into unexplored polar territories of the magnetosphere. Focusing on these polar regions, we review current understanding of the structure and dynamics of the magnetosphere and summarize the outstanding issues. The Juno mission profile involves (a) a several-week approach from the dawn side of Jupiter’s magnetosphere, with an orbit-insertion maneuver on July 6, 2016; (b) a 107-day capture orbit, also on the dawn flank; and (c) a series of thirty 11-day science orbits with the spacecraft flying over Jupiter’s poles and ducking under the radiation belts. We show how Juno’s view of the magnetosphere evolves over the year of science orbits. The Juno spacecraft carries a range of instruments that take particles and fields measurements, remote sensing observations of auroral emissions at UV, visible, IR and radio wavelengths, and detect microwave emission from Jupiter’s radiation belts. We summarize how these Juno measurements address issues of auroral processes, microphysical plasma physics, ionosphere-magnetosphere and satellite-magnetosphere coupling, sources and sinks of plasma, the radiation belts, and the dynamics of the outer magnetosphere. To reach Jupiter, the Juno spacecraft passed close to the Earth on October 9, 2013, gaining the necessary energy to get to Jupiter. The Earth flyby provided an opportunity to test Juno’s instrumentation as well as take scientific data in the terrestrial magnetosphere, in conjunction with ground-based and Earth-orbiting assets. 相似文献
123.
V. A. Sadovnichiy A. M. Amelyushkin V. Angelopoulos V. V. Bengin V. V. Bogomolov G. K. Garipov E. S. Gorbovskoy B. Grossan P. A. Klimov B. A. Khrenov J. Lee V. M. Lipunov G. W. Na M. I. Panasyuk I. H. Park V. L. Petrov C. T. Russell S. I. Svertilov E. A. Sigaeva G. F. Smoot Yu. Shprits N. N. Vedenkin I. V. Yashin 《Cosmic Research》2013,51(6):427-433
At present, the Institute of Nuclear Physics of Moscow State University, in cooperation with other organizations, is preparing space experiments onboard the Lomonosov satellite. The main goal of this mission is to study extreme astrophysical phenomena such as cosmic gamma-ray bursts and ultra-high-energy cosmic rays. These phenomena are associated with the processes occurring in the early universe in very distant astrophysical objects, therefore, they can provide information on the first stages of the evolution of the universe. This paper considers the main characteristics of the scientific equipment aboard the Lomonosov satellite. 相似文献
124.
125.
L. M. Zelenyi M. S. Dolgonosov A. A. Bykov V. Yu. Popov Kh. V. Malova 《Cosmic Research》2002,40(4):357-366
Using both analytical and numerical models of the collisionless anisotropic current sheet generated by the impinging flows of transient ions, we have studied the self-consistent solutions taking the plasma trapped in the sheet into account. It is demonstrated that there exists a limited window in the space of system parameters where self-consistent solutions can exist. When the density of the quasi-trapped plasma is sufficiently large, a redistribution of the total current can be a cause of the sheet decay, when the local current of the trapped particles compensate (totally or in part) the main current in the center and at the edges of the sheet, while the total current generated by ions on the trapped trajectories vanishes. 相似文献
126.
Summons RE Amend JP Bish D Buick R Cody GD Des Marais DJ Dromart G Eigenbrode JL Knoll AH Sumner DY 《Astrobiology》2011,11(2):157-181
The Mars Science Laboratory (MSL) has an instrument package capable of making measurements of past and present environmental conditions. The data generated may tell us if Mars is, or ever was, able to support life. However, the knowledge of Mars' past history and the geological processes most likely to preserve a record of that history remain sparse and, in some instances, ambiguous. Physical, chemical, and geological processes relevant to biosignature preservation on Earth, especially under conditions early in its history when microbial life predominated, are also imperfectly known. Here, we present the report of a working group chartered by the Co-Chairs of NASA's MSL Project Science Group, John P. Grotzinger and Michael A. Meyer, to review and evaluate potential for biosignature formation and preservation on Mars. Orbital images confirm that layered rocks achieved kilometer-scale thicknesses in some regions of ancient Mars. Clearly, interplays of sedimentation and erosional processes govern present-day exposures, and our understanding of these processes is incomplete. MSL can document and evaluate patterns of stratigraphic development as well as the sources of layered materials and their subsequent diagenesis. It can also document other potential biosignature repositories such as hydrothermal environments. These capabilities offer an unprecedented opportunity to decipher key aspects of the environmental evolution of Mars' early surface and aspects of the diagenetic processes that have operated since that time. Considering the MSL instrument payload package, we identified the following classes of biosignatures as within the MSL detection window: organism morphologies (cells, body fossils, casts), biofabrics (including microbial mats), diagnostic organic molecules, isotopic signatures, evidence of biomineralization and bioalteration, spatial patterns in chemistry, and biogenic gases. Of these, biogenic organic molecules and biogenic atmospheric gases are considered the most definitive and most readily detectable by MSL. 相似文献
127.
考虑太阳风动压与行星电离层中的带电粒子热压及磁压之和平衡,建立了有大气(电离层)的行星磁层顶形成的理论模型,结合卫星对火星的观测数据,对子午面内向日侧火星磁层顶位形进行了数值计算和分析,研究了火星磁层顶位形及其与太阳风动压之间的变化关系.结果认为,火星磁层顶位形与地球磁层顶相似.太阳风动压越大,火星磁层顶越靠近火星;太阳风动压越弱,火星磁层顶越远离火星.根据火星内秉磁矩从古到今逐渐减小的观点,探索了大尺度磁场(内禀磁矩)对火星磁层顶的贡献作用,结果认为大尺度磁场越强,火星磁层顶越远离行星.这对于进一步研究火星磁层的长期演化以及其他行星磁层的位形变化都具有重要的意义. 相似文献
128.
L. E. Floyd D. K. Prinz P. C. Crane L. C. Herring 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2002,29(12):296-1962
The Solar Ultraviolet Spectral Irradiance Monitor (SUSIM) aboard the Upper Atmosphere Research Satellite (UARS) has been measuring solar UV irradiances since October 1991, a period which includes the decline of solar cycle 22 followed by the rise of cycle 23. Daily solar measurements include scans over the wavelength range 115–410 nm at 1.1 nm resolution. As expected, the measured time series of UV irradiances exhibit strong periodicities in solar cycle and solar rotation. For all wavelengths, the UV irradiance time series are similar to that of the Mg II core-to-wing ratio. During solar cycle 22, the irradiance of the strong Ly- line varied by more than a factor of two. The peak-to-peak irradiance variation declined with increasing wavelength, reaching 10% just below the Al edge at 208 nm. Between the Al edge and 250 nm the variation was 6–7%. Above 250 nm, the variation declines further until none is observed above 290 nm. Preliminary results for the first portion of cycle 23 indicate that the far UV below the Al edge is rising at about the same rate as the Mg II index while the irradiances in the Ly- emission line and for wavelengths longer than the Al edge are rising more slowly — even after accounting for the lower level of activity of cycle 23. 相似文献
129.
130.
L. G. Blomberg J. A. Cumnock 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2004,33(12):2161-2165
Mercury has a small but intriguing magnetosphere. In this brief review, we discuss some similarities and differences between Mercury’s and Earth’s magnetospheres. In particular, we discuss how electric and magnetic field measurements can be used as a diagnostic tool to improve our understanding of the dynamics of Mercury’s magnetosphere. These points are of interest to the upcoming ESA-JAXA BepiColombo mission to Mercury. 相似文献