全文获取类型
收费全文 | 5415篇 |
免费 | 9篇 |
国内免费 | 18篇 |
专业分类
航空 | 2836篇 |
航天技术 | 1920篇 |
综合类 | 23篇 |
航天 | 663篇 |
出版年
2021年 | 30篇 |
2019年 | 32篇 |
2018年 | 57篇 |
2017年 | 31篇 |
2014年 | 82篇 |
2013年 | 132篇 |
2012年 | 107篇 |
2011年 | 155篇 |
2010年 | 114篇 |
2009年 | 177篇 |
2008年 | 245篇 |
2007年 | 136篇 |
2006年 | 140篇 |
2005年 | 143篇 |
2004年 | 114篇 |
2003年 | 170篇 |
2002年 | 101篇 |
2001年 | 176篇 |
2000年 | 109篇 |
1999年 | 140篇 |
1998年 | 164篇 |
1997年 | 123篇 |
1996年 | 169篇 |
1995年 | 215篇 |
1994年 | 182篇 |
1993年 | 120篇 |
1992年 | 127篇 |
1991年 | 76篇 |
1990年 | 62篇 |
1989年 | 138篇 |
1988年 | 62篇 |
1987年 | 66篇 |
1986年 | 60篇 |
1985年 | 195篇 |
1984年 | 150篇 |
1983年 | 130篇 |
1982年 | 133篇 |
1981年 | 176篇 |
1980年 | 58篇 |
1979年 | 41篇 |
1978年 | 50篇 |
1977年 | 53篇 |
1976年 | 38篇 |
1975年 | 58篇 |
1974年 | 38篇 |
1973年 | 42篇 |
1972年 | 51篇 |
1971年 | 42篇 |
1970年 | 44篇 |
1969年 | 37篇 |
排序方式: 共有5442条查询结果,搜索用时 13 毫秒
161.
Blunt Shannon D. Shackelford Aaron K. Gerlach Karl Smith Kevin J. 《IEEE transactions on aerospace and electronic systems》2009,45(2):647-659
The effects of target Doppler are addressed in relation to adaptive receive processing for radar pulse compression. To correct for Doppler-induced filter mismatch over a single pulse, the Doppler-compensated adaptive pulse compression (DC-APC) algorithm is presented whereby the respective Doppler shifts for large target returns are jointly estimated with the illuminated range profile and subsequently incorporated into the original APC adaptive receive filter formulation. As a result, the Doppler-mismatch-induced range sidelobes can be suppressed thereby regaining a significant portion of the sensitivity improvement that is possible when applying adaptive pulse compression (APC) without the existence of significant Doppler mismatch. In contrast, instead of compensating for Doppler mismatch, the single pulse imaging (SPI) algorithm generalizes the APC formulation for a bank of Doppler-shifted matched filters thereby producing a sidelobe-suppressed range-Doppler image from the return signal of a single radar pulse which is applicable for targets with substantial variation in Doppler. Both techniques are based on the recently proposed APC algorithm and its generalization, the multistatic adaptive pulse compression (MAPC) algorithm, which have been shown to be effective for the suppression of pulse compression range sidelobes thus dramatically increasing the sensitivity of pulse compression radar. 相似文献
162.
Leslie A. Young S. Alan Stern Harold A. Weaver Fran Bagenal Richard P. Binzel Bonnie Buratti Andrew F. Cheng Dale Cruikshank G. Randall Gladstone William M. Grundy David P. Hinson Mihaly Horanyi Donald E. Jennings Ivan R. Linscott David J. McComas William B. McKinnon Ralph McNutt Jeffery M. Moore Scott Murchie Catherine B. Olkin Carolyn C. Porco Harold Reitsema Dennis C. Reuter John R. Spencer David C. Slater Darrell Strobel Michael E. Summers G. Leonard Tyler 《Space Science Reviews》2008,140(1-4):93-127
The New Horizons spacecraft will achieve a wide range of measurement objectives at the Pluto system, including color and panchromatic maps, 1.25–2.50 micron spectral images for studying surface compositions, and measurements of Pluto’s atmosphere (temperatures, composition, hazes, and the escape rate). Additional measurement objectives include topography, surface temperatures, and the solar wind interaction. The fulfillment of these measurement objectives will broaden our understanding of the Pluto system, such as the origin of the Pluto system, the processes operating on the surface, the volatile transport cycle, and the energetics and chemistry of the atmosphere. The mission, payload, and strawman observing sequences have been designed to achieve the NASA-specified measurement objectives and maximize the science return. The planned observations at the Pluto system will extend our knowledge of other objects formed by giant impact (such as the Earth–moon), other objects formed in the outer solar system (such as comets and other icy dwarf planets), other bodies with surfaces in vapor-pressure equilibrium (such as Triton and Mars), and other bodies with N2:CH4 atmospheres (such as Titan, Triton, and the early Earth). 相似文献
163.
The Ionization Gauge Investigation for the Streak Mission 总被引:1,自引:0,他引:1
J. H. Clemmons L. M. Friesen N. Katz M. Ben-Ami Y. Dotan R. L. Bishop 《Space Science Reviews》2009,145(3-4):263-283
164.
J. Mazur L. Friesen A. Lin D. Mabry N. Katz Y. Dotan J. George J. B. Blake M. Looper M. Redding T. P. O’Brien J. Cha A. Birkitt P. Carranza M. Lalic F. Fuentes R. Galvan M. McNab 《Space Science Reviews》2013,179(1-4):221-261
The Relativistic Proton Spectrometer (RPS) on the Radiation Belt Storm Probes spacecraft is a particle spectrometer designed to measure the flux, angular distribution, and energy spectrum of protons from ~60 MeV to ~2000 MeV. RPS will investigate decades-old questions about the inner Van Allen belt proton environment: a nearby region of space that is relatively unexplored because of the hazards of spacecraft operation there and the difficulties in obtaining accurate proton measurements in an intense penetrating background. RPS is designed to provide the accuracy needed to answer questions about the sources and losses of the inner belt protons and to obtain the measurements required for the next-generation models of trapped protons in the magnetosphere. In addition to detailed information for individual protons, RPS features count rates at a 1-second timescale, internal radiation dosimetry, and information about electrostatic discharge events on the RBSP spacecraft that together will provide new information about space environmental hazards in the Earth’s magnetosphere. 相似文献
165.
F. Durret J. S. Kaastra J. Nevalainen T. Ohashi N. Werner 《Space Science Reviews》2008,134(1-4):51-70
An excess over the extrapolation to the extreme ultraviolet and soft X-ray ranges of the thermal emission from the hot intracluster
medium has been detected in a number of clusters of galaxies. We briefly present each of the satellites (EUVE, ROSAT PSPC
and BeppoSAX, and presently XMM-Newton, Chandra and Suzaku) and their corresponding instrumental issues, which are responsible
for the fact that this soft excess remains controversial in a number of cases. We then review the evidence for this soft X-ray
excess and discuss the possible mechanisms (thermal and non-thermal) which could be responsible for this emission. 相似文献
166.
This paper presents an analytical solution for static analysis of thick rectangular beams with different boundary conditions.Carrera's Unified Formulation (CUF) is used in order to consider shear deformation theories of arbitrary order.The novelty of the present work is that a boundary discontinuous Fourier approach is used to consider clamped boundary conditions in the analytical solution,unlike Navier-type solutions which are restricted to simply supported beams.Governing equations are obtained by employing the principle of virtual work.The numerical accuracy of results is ascertained by studying the convergence of the solution and comparing the results to those of a 3D finite element solution.Beams subjected to bending due to a uniform pressure load and subjected to torsion due to opposite linear forces are considered.Overall,accurate results close to those of 3D finite element solutions are obtained,which can be used to validate finite element results or other approximate methods. 相似文献
167.
S. B. Mende H. U. Frey K. Rider C. Chou S. E. Harris O. H. W. Siegmund S. L. England C. Wilkins W. Craig T. J. Immel P. Turin N. Darling J. Loicq P. Blain E. Syrstad B. Thompson R. Burt J. Champagne P. Sevilla S. Ellis 《Space Science Reviews》2017,212(1-2):655-696
ICON Far UltraViolet (FUV) imager contributes to the ICON science objectives by providing remote sensing measurements of the daytime and nighttime atmosphere/ionosphere. During sunlit atmospheric conditions, ICON FUV images the limb altitude profile in the shortwave (SW) band at 135.6 nm and the longwave (LW) band at 157 nm perpendicular to the satellite motion to retrieve the atmospheric O/N2 ratio. In conditions of atmospheric darkness, ICON FUV measures the 135.6 nm recombination emission of \(\mathrm{O}^{+}\) ions used to compute the nighttime ionospheric altitude distribution. ICON Far UltraViolet (FUV) imager is a Czerny–Turner design Spectrographic Imager with two exit slits and corresponding back imager cameras that produce two independent images in separate wavelength bands on two detectors. All observations will be processed as limb altitude profiles. In addition, the ionospheric 135.6 nm data will be processed as longitude and latitude spatial maps to obtain images of ion distributions around regions of equatorial spread F. The ICON FUV optic axis is pointed 20 degrees below local horizontal and has a steering mirror that allows the field of view to be steered up to 30 degrees forward and aft, to keep the local magnetic meridian in the field of view. The detectors are micro channel plate (MCP) intensified FUV tubes with the phosphor fiber-optically coupled to Charge Coupled Devices (CCDs). The dual stack MCP-s amplify the photoelectron signals to overcome the CCD noise and the rapidly scanned frames are co-added to digitally create 12-second integrated images. Digital on-board signal processing is used to compensate for geometric distortion and satellite motion and to achieve data compression. The instrument was originally aligned in visible light by using a special grating and visible cameras. Final alignment, functional and environmental testing and calibration were performed in a large vacuum chamber with a UV source. The test and calibration program showed that ICON FUV meets its design requirements and is ready to be launched on the ICON spacecraft. 相似文献
168.
In order for future imaging spacecraft to meet higher resolution imaging capability, it will be necessary to build large space telescopes with primary mirror diameters that range from 10 m to 20 m and do so with nanometer surface accuracy. Due to launch vehicle mass and volume constraints, these mirrors have to be deployable and lightweight, such as segmented mirrors using active optics to correct mirror surfaces with closed loop control. As a part of this work, system identification tests revealed that dynamic disturbances inherent in a laboratory environment are significant enough to degrade the optical performance of the telescope. Research was performed at the Naval Postgraduate School to identify the vibration modes most affecting the optical performance and evaluate different techniques to increase damping of those modes. Based on this work, tuned mass dampers (TMDs) were selected because of their simplicity in implementation and effectiveness in targeting specific modes. The selected damping mechanism was an eddy current damper where the damping and frequency of the damper could be easily changed. System identification of segments was performed to derive TMD specifications. Several configurations of the damper were evaluated, including the number and placement of TMDs, damping constant, and targeted structural modes. The final configuration consisted of two dampers located at the edge of each segment and resulted in 80% reduction in vibrations. The WFE for the system without dampers was 1.5 waves, with one TMD the WFE was 0.9 waves, and with two TMDs the WFE was 0.25 waves. This paper provides details of some of the work done in this area and includes theoretical predictions for optimum damping which were experimentally verified on a large aperture segmented system. 相似文献
169.
Glasauer S Amorim MA Bloomberg JJ Reschke MF Peters BT Smith SL Berthoz A 《Acta Astronautica》1995,36(8-12):423-431
To investigate changes in spatial orientation ability and walking performance following space flight, 7 astronaut subjects were asked pre- and post-flight to perform a goal directed locomotion paradigm which consisted of walking a triangular path with and without vision. This new paradigm, involving inputs from different sensory systems, allows quantification of several critical parameters, like orientation performance, walking velocities and postural stability, in a natural walking task. The paper presented here mainly focusses on spatial orientation performance quantified by the errors in walking the previously seen path without vision. Errors in length and reaching the corners did not change significantly from pre- to post-flight, while absolute angular errors slightly increased post-flight. The significant decrease in walking velocity and a change in head-trunk coordination while walking around the corners of the path observed post-flight may suggest that during re-adaptation to gravity the mechanisms which are necessary to perform the task have to be re-accomplished. 相似文献
170.
Highly mobile space suit material optimization 总被引:1,自引:0,他引:1
This paper discusses the factors that control the flexibility of fabric space suit elements by examining a bending model of a pressurized fabric tube. Results from the model are used to evaluate the current direction in highly mobile EVA glove research and suggest that changes are necessary in the suit and glove fabric selection methodology. 相似文献