首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5415篇
  免费   9篇
  国内免费   18篇
航空   2836篇
航天技术   1920篇
综合类   23篇
航天   663篇
  2021年   30篇
  2019年   32篇
  2018年   57篇
  2017年   31篇
  2014年   82篇
  2013年   132篇
  2012年   107篇
  2011年   155篇
  2010年   114篇
  2009年   177篇
  2008年   245篇
  2007年   136篇
  2006年   140篇
  2005年   143篇
  2004年   114篇
  2003年   170篇
  2002年   101篇
  2001年   176篇
  2000年   109篇
  1999年   140篇
  1998年   164篇
  1997年   123篇
  1996年   169篇
  1995年   215篇
  1994年   182篇
  1993年   120篇
  1992年   127篇
  1991年   76篇
  1990年   62篇
  1989年   138篇
  1988年   62篇
  1987年   66篇
  1986年   60篇
  1985年   195篇
  1984年   150篇
  1983年   130篇
  1982年   133篇
  1981年   176篇
  1980年   58篇
  1979年   41篇
  1978年   50篇
  1977年   53篇
  1976年   38篇
  1975年   58篇
  1974年   38篇
  1973年   42篇
  1972年   51篇
  1971年   42篇
  1970年   44篇
  1969年   37篇
排序方式: 共有5442条查询结果,搜索用时 15 毫秒
721.
The haloarchaea Natrialba magadii and Haloferax volcanii, as well as the radiation-resistant bacterium Deinococcus radiodurans, were exposed to vacuum UV (VUV) radiation at the Brazilian Synchrotron Light Laboratory. Cell monolayers (containing 10(5) to 10(6) cells per sample) were prepared over polycarbonate filters and irradiated under high vacuum (10(-5) Pa) with polychromatic synchrotron radiation. N. magadii was remarkably resistant to high vacuum with a survival fraction of (3.77±0.76)×10(-2), which was larger than that of D. radiodurans (1.13±0.23)×10(-2). The survival fraction of the haloarchaea H. volcanii, of (3.60±1.80)×10(-4), was much smaller. Radiation resistance profiles were similar between the haloarchaea and D. radiodurans for fluences up to 150?J m(-2). For fluences larger than 150?J m(-2), there was a significant decrease in the survival of haloarchaea, and in particular H. volcanii did not survive. Survival for D. radiodurans was 1% after exposure to the higher VUV fluence (1350?J m(-2)), while N. magadii had a survival lower than 0.1%. Such survival fractions are discussed regarding the possibility of interplanetary transfer of viable microorganisms and the possible existence of microbial life in extraterrestrial salty environments such as the planet Mars and Jupiter's moon Europa. This is the first work to report survival of haloarchaea under simulated interplanetary conditions.  相似文献   
722.
Basaltic glasses (hyaloclastite) are a widespread habitat for life in volcanic environments, yet their interior physical conditions are poorly characterized. We investigated the characteristics of exposed weathered basaltic glass from a surface outcrop in Iceland, using microprobes capable of continuous sensing, to determine whether the physical conditions in the rock interior are hospitable to microbial life. The material provided thermal protection from freeze-thaw and rapid temperature fluctuations, similar to data reported for other rock types. Water activity experiments showed that at moisture contents less than 13% wet weight, the glass and its weathering product, palagonite, had a water activity below levels suitable for bacterial growth. In pore spaces, however, these higher moisture conditions might be maintained for many days after a precipitation event. Gas exchange between the rock interior and exterior was rapid (< 10 min) when the rocks were dry, but when saturated with water, equilibration took many hours. During this period, we demonstrated the potential for low oxygen conditions within the rock caused by respiratory stimulation of the heterotrophic community within. These conditions might exist within subglacial environments during the formation of the rocks or in micro-environments in the interior of exposed rocks. The experiments showed that microbial communities at the site studied here could potentially be active for 39% of the year, if the depth of the community within the outcrop maintains a balance between access to liquid water and adequate protection from freezing. In the absence of precipitation, the interior of weathered basaltic glass is an extreme and life-limiting environment for microorganisms on Earth and other planets.  相似文献   
723.
Periodic episodes of increased sunspot activity (solar electromagnetic storms) occur with 10-11 and 5-6 year periodicities and may be associated with measurable biological events. We investigated whether this sunspot periodicity characterized the incidence of Pap smear-determined cervical epithelial histopathologies and human physiologic functions. From January 1983 through December 2003, monthly averages were obtained for solar flux and sunspot numbers; six infectious, premalignant and malignant changes in the cervical epithelium from 1,182,421 consecutive, serially independent, screening Pap smears (59°9″N, 4°29″E); and six human physiologic functions of a healthy man (oral temperature, pulse, systolic and diastolic blood pressure, respiration, and peak expiratory flow), which were measured ~5 times daily during ~34,500 self-measurement sessions (44°56″N, 93°8″W). After determining that sunspot numbers and solar flux, which were not annually rhythmic, occurred with a prominent 10-year and a less-prominent 5.75-year periodicity during this 21-year study span, each biological data set was analyzed with the same curve-fitting procedures. All six annually rhythmic Pap smear-detected infectious, premalignant and malignant cervical epithelial pathologies showed strong 10-year and weaker 5.75-year cycles, as did all six self-measured, annually rhythmic, physiologic functions. The phases (maxima) for the six histopathologic findings and five of six physiologic measurements were very near, or within, the first two quarters following the 10-year solar maxima. These findings add to the growing evidence that solar magnetic storm periodicities are mirrored by cyclic phase-locked rhythms of similar period length or lengths in human physiology and pathophysiology.  相似文献   
724.
Mercury’s regolith, derived from the crustal bedrock, has been altered by a set of space weathering processes. Before we can interpret crustal composition, it is necessary to understand the nature of these surface alterations. The processes that space weather the surface are the same as those that form Mercury’s exosphere (micrometeoroid flux and solar wind interactions) and are moderated by the local space environment and the presence of a global magnetic field. To comprehend how space weathering acts on Mercury’s regolith, an understanding is needed of how contributing processes act as an interactive system. As no direct information (e.g., from returned samples) is available about how the system of space weathering affects Mercury’s regolith, we use as a basis for comparison the current understanding of these same processes on lunar and asteroidal regoliths as well as laboratory simulations. These comparisons suggest that Mercury’s regolith is overturned more frequently (though the characteristic surface time for a grain is unknown even relative to the lunar case), more than an order of magnitude more melt and vapor per unit time and unit area is produced by impact processes than on the Moon (creating a higher glass content via grain coatings and agglutinates), the degree of surface irradiation is comparable to or greater than that on the Moon, and photon irradiation is up to an order of magnitude greater (creating amorphous grain rims, chemically reducing the upper layers of grains to produce nanometer-scale particles of metallic iron, and depleting surface grains in volatile elements and alkali metals). The processes that chemically reduce the surface and produce nanometer-scale particles on Mercury are suggested to be more effective than similar processes on the Moon. Estimated abundances of nanometer-scale particles can account for Mercury’s dark surface relative to that of the Moon without requiring macroscopic grains of opaque minerals. The presence of nanometer-scale particles may also account for Mercury’s relatively featureless visible–near-infrared reflectance spectra. Characteristics of material returned from asteroid 25143 Itokawa demonstrate that this nanometer-scale material need not be pure iron, raising the possibility that the nanometer-scale material on Mercury may have a composition different from iron metal [such as (Fe,Mg)S]. The expected depletion of volatiles and particularly alkali metals from solar-wind interaction processes are inconsistent with the detection of sodium, potassium, and sulfur within the regolith. One plausible explanation invokes a larger fine fraction (grain size <45 μm) and more radiation-damaged grains than in the lunar surface material to create a regolith that is a more efficient reservoir for these volatiles. By this view the volatile elements detected are present not only within the grain structures, but also as adsorbates within the regolith and deposits on the surfaces of the regolith grains. The comparisons with findings from the Moon and asteroids provide a basis for predicting how compositional modifications induced by space weathering have affected Mercury’s surface composition.  相似文献   
725.
In this chapter, I present a summary of observational tests of the basic picture of disk accretion. An emphasis is placed on tests relevant to black holes, but many of the fundamental results are drawn from studies of other classes of systems. Evidence is discussed for the basic structures of accretion flows. The cases of systems with and without accretion disks are discussed, as is the evidence that disks actually form. Also discussed are the hot spots where accretion streams impact the disks, and the boundary layers in the inner parts of systems where the accretors are not black holes. The nature of slow, large amplitude variability is discussed. It is shown that some of the key predictions of the classical thermal-viscous ionization instability model for producing outbursts are in excellent agreement with observational results. It is also show that there are systems whose outbursts are extremely difficult to explain without invoking variations in the rate of mass transfer from the donor star into the outer accretion disk, or tidally induced variations in the mass transfer rates. Finally, I briefly discuss recent quasar microlensing measurements which give truly independent constraints on the inner accretion geometry around black holes.  相似文献   
726.
Recently, Supernova 2006gy was noted as the most luminous ever recorded, with a total radiated energy of approximately 10(44) Joules. It was proposed that the progenitor may have been a massive evolved star similar to eta Carinae, which resides in our own Galaxy at a distance of about 2.3 kpc. eta Carinae appears ready to detonate. Although it is too distant to pose a serious threat as a normal supernova, and given that its rotation axis is unlikely to produce a gamma-ray burst oriented toward Earth, eta Carinae is about 30,000 times nearer than 2006gy, and we re-evaluate it as a potential superluminous supernova. We have found that, given the large ratio of emission in the optical to the X-ray, atmospheric effects are negligible. Ionization of the atmosphere and concomitant ozone depletion are unlikely to be important. Any cosmic ray effects should be spread out over approximately 10(4) y and similarly unlikely to produce any serious perturbation to the biosphere. We also discuss a new possible effect of supernovae-e-ndocrine disruption induced by blue light near the peak of the optical spectrum. This is a possibility for nearby supernovae at distances too large to be considered "dangerous" for other reasons. However, due to reddening and extinction by the interstellar medium, eta Carinae is unlikely to trigger such effects to any significant degree.  相似文献   
727.
Turner RE  Baker JC 《Acta Astronautica》1998,42(1-8):107-114
The high inclination orbit for the International Space Station poses a risk to astronauts on EVA during occasional periods of enhanced high energy particle flux from the sun known as Solar Particle Events. We are currently unable to predict these events within the few-hour lead time required for evasive action. Compounding the threat is the fact that station construction occurs during increasing solar activity and through the peak of the solar cycle. In this paper we present an overview of the risk, the current methods to provide forecasts of SPEs, and potential risk mitigation options.  相似文献   
728.
In order to help assess the risk to astronauts due to the long-term exposure to the natural radiation environment in space, an understanding of how the primary radiation field is changed when passing through shielding and tissue materials must be obtained. One important aspect of the change in the primary radiation field after passing through shielding materials is the production of secondary particles from the breakup of the primary. Neutrons are an important component of the secondary particle field due to their relatively high biological weighting factors, and due to their relative abundance, especially behind thick shielding scenarios. Because of the complexity of the problem, the estimation of the risk from exposure to the secondary neutron field must be handled using calculational techniques. However, those calculations will need an extensive set of neutron cross section and thicktarget neutron yield data in order to make an accurate assessment of the risk. In this paper we briefly survey the existing neutron-production data sets that are applicable to the space radiation transport problem, and we point out how neutron production from protons is different than neutron production from heavy ions. We also make comparisons of one the heavy-ion data sets with Boltzmann-Uehling-Uhlenbeck (BUU) calculations.  相似文献   
729.
Experiments on chemical disinfection by iodinated resins were conducted on STS 50 (USML-1), which flew a 13 day mission during 1992. Fluid processing apparatus containing microorganisms and iodinated resins was assembled in either Manhattan, Kansas, or Boulder, Colorado, and loaded on-board the Space Shuttle for the mission. Pentaiodide resin was more effective than the triiodide resin against Escherichia coli. Both resins were more effective bactericides at unit gravity than microgravity because of cosedimentation of bacteria and iodinated resin beads. In bacteriophage experiments, the triiodide resin reduced the viable titer of MS-2 by nine logs. The few viable phage surviving chemical disinfection were associated with precipitant formation in the fluid processing apparatus.  相似文献   
730.
To meet the significant increase in EVA demand to support assembly and operations of the International Space Station (ISS), NASA and industry have improved the current Shuttle Extravehicular Mobility Unit (EMU), or "space suit", configuration to meet the unique and specific requirements of an orbital-based system. The current Shuttle EMU was designed to be maintained and serviced on the ground between frequent Shuttle flights. ISS will require the EMUs to meet increased EVAs out of the Shuttle Orbiter and to remain on orbit for up to 180 days without need for regular return to Earth for scheduled maintenance or refurbishment. Ongoing Shuttle EMU improvements have increased reliability, operational life and performance while minimizing ground and on-orbit maintenance cost and expendable inventory. Modifications to both the anthropomorphic mobility elements of the Space Suit Assembly (SSA) as well as to the Primary Life Support System (PLSS) are identified and discussed. This paper also addresses the status of on-going Shuttle EMU improvements and summarizes the approach for increasing interoperability of the U.S. and Russian space suits to be utilized aboard the ISS.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号