全文获取类型
收费全文 | 5415篇 |
免费 | 9篇 |
国内免费 | 18篇 |
专业分类
航空 | 2836篇 |
航天技术 | 1920篇 |
综合类 | 23篇 |
航天 | 663篇 |
出版年
2021年 | 30篇 |
2019年 | 32篇 |
2018年 | 57篇 |
2017年 | 31篇 |
2014年 | 82篇 |
2013年 | 132篇 |
2012年 | 107篇 |
2011年 | 155篇 |
2010年 | 114篇 |
2009年 | 177篇 |
2008年 | 245篇 |
2007年 | 136篇 |
2006年 | 140篇 |
2005年 | 143篇 |
2004年 | 114篇 |
2003年 | 170篇 |
2002年 | 101篇 |
2001年 | 176篇 |
2000年 | 109篇 |
1999年 | 140篇 |
1998年 | 164篇 |
1997年 | 123篇 |
1996年 | 169篇 |
1995年 | 215篇 |
1994年 | 182篇 |
1993年 | 120篇 |
1992年 | 127篇 |
1991年 | 76篇 |
1990年 | 62篇 |
1989年 | 138篇 |
1988年 | 62篇 |
1987年 | 66篇 |
1986年 | 60篇 |
1985年 | 195篇 |
1984年 | 150篇 |
1983年 | 130篇 |
1982年 | 133篇 |
1981年 | 176篇 |
1980年 | 58篇 |
1979年 | 41篇 |
1978年 | 50篇 |
1977年 | 53篇 |
1976年 | 38篇 |
1975年 | 58篇 |
1974年 | 38篇 |
1973年 | 42篇 |
1972年 | 51篇 |
1971年 | 42篇 |
1970年 | 44篇 |
1969年 | 37篇 |
排序方式: 共有5442条查询结果,搜索用时 15 毫秒
171.
Louise M. Prockter Rosaly M. C. Lopes Bernd Giese Ralf Jaumann Ralph D. Lorenz Robert T. Pappalardo Gerald W. Patterson Peter C. Thomas Elizabeth P. Turtle Roland J. Wagner 《Space Science Reviews》2010,153(1-4):63-111
The surfaces of the Solar System’s icy satellites show an extraordinary variety of morphological features, which bear witness to exchange processes between the surface and subsurface. In this paper we review the characteristics of surface features on the moons of Jupiter, Saturn, Uranus and Neptune. Using data from spacecraft missions, we discuss the detailed morphology, size, and topography of cryovolcanic, tectonic, aeolian, fluvial, and impact features of both large moons and smaller satellites. 相似文献
172.
S. M. Krimigis D. G. Mitchell D. C. Hamilton S. Livi J. Dandouras S. Jaskulek T. P. Armstrong J. D. Boldt A. F. Cheng G. Gloeckler J. R. Hayes K. C. Hsieh W.-H. Ip E. P. Keath E. Kirsch N. Krupp L. J. Lanzerotti R. Lundgren B. H. Mauk R. W. McEntire E. C. Roelof C. E. Schlemm B. E. Tossman B. Wilken D. J. Williams 《Space Science Reviews》2004,114(1-4):233-329
The magnetospheric imaging instrument (MIMI) is a neutral and charged particle detection system on the Cassini orbiter spacecraft designed to perform both global imaging and in-situ measurements to study the overall configuration and dynamics of Saturn’s magnetosphere and its interactions with the solar wind, Saturn’s atmosphere, Titan, and the icy satellites. The processes responsible for Saturn’s aurora will be investigated; a search will be performed for substorms at Saturn; and the origins of magnetospheric hot plasmas will be determined. Further, the Jovian magnetosphere and Io torus will be imaged during Jupiter flyby. The investigative approach is twofold. (1) Perform remote sensing of the magnetospheric energetic (E > 7 keV) ion plasmas by detecting and imaging charge-exchange neutrals, created when magnetospheric ions capture electrons from ambient neutral gas. Such escaping neutrals were detected by the Voyager l spacecraft outside Saturn’s magnetosphere and can be used like photons to form images of the emitting regions, as has been demonstrated at Earth. (2) Determine through in-situ measurements the 3-D particle distribution functions including ion composition and charge states (E > 3 keV/e). The combination of in-situ measurements with global images, together with analysis and interpretation techniques that include direct “forward modeling’’ and deconvolution by tomography, is expected to yield a global assessment of magnetospheric structure and dynamics, including (a) magnetospheric ring currents and hot plasma populations, (b) magnetic field distortions, (c) electric field configuration, (d) particle injection boundaries associated with magnetic storms and substorms, and (e) the connection of the magnetosphere to ionospheric altitudes. Titan and its torus will stand out in energetic neutral images throughout the Cassini orbit, and thus serve as a continuous remote probe of ion flux variations near 20R
S (e.g., magnetopause crossings and substorm plasma injections). The Titan exosphere and its cometary interaction with magnetospheric plasmas will be imaged in detail on each flyby. The three principal sensors of MIMI consists of an ion and neutral camera (INCA), a charge–energy–mass-spectrometer (CHEMS) essentially identical to our instrument flown on the ISTP/Geotail spacecraft, and the low energy magnetospheric measurements system (LEMMS), an advanced design of one of our sensors flown on the Galileo spacecraft. The INCA head is a large geometry factor (G ∼ 2.4 cm2 sr) foil time-of-flight (TOF) camera that separately registers the incident direction of either energetic neutral atoms (ENA) or ion species (≥5∘ full width half maximum) over the range 7 keV/nuc < E < 3 MeV/nuc. CHEMS uses electrostatic deflection, TOF, and energy measurement to determine ion energy, charge state, mass, and 3-D anisotropy in the range 3 ≤ E ≤ 220 keV/e with good (∼0.05 cm2 sr) sensitivity. LEMMS is a two-ended telescope that measures ions in the range 0.03 ≤ E ≤ 18 MeV and electrons 0.015 ≤ E≤ 0.884 MeV in the forward direction (G ∼ 0.02 cm2 sr), while high energy electrons (0.1–5 MeV) and ions (1.6–160 MeV) are measured from the back direction (G ∼ 0.4 cm2 sr). The latter are relevant to inner magnetosphere studies of diffusion processes and satellite microsignatures as well as cosmic ray albedo neutron decay (CRAND). Our analyses of Voyager energetic neutral particle and Lyman-α measurements show that INCA will provide statistically significant global magnetospheric images from a distance of ∼60 R
S every 2–3 h (every ∼10 min from ∼20 R
S). Moreover, during Titan flybys, INCA will provide images of the interaction of the Titan exosphere with the Saturn magnetosphere every 1.5 min. Time resolution for charged particle measurements can be < 0.1 s, which is more than adequate for microsignature studies. Data obtained during Venus-2 flyby and Earth swingby in June and August 1999, respectively, and Jupiter flyby in December 2000 to January 2001 show that the instrument is performing well, has made important and heretofore unobtainable measurements in interplanetary space at Jupiter, and will likely obtain high-quality data throughout each orbit of the Cassini mission at Saturn. Sample data from each of the three sensors during the August 18 Earth swingby are shown, including the first ENA image of part of the ring current obtained by an instrument specifically designed for this purpose. Similarily, measurements in cis-Jovian space include the first detailed charge state determination of Iogenic ions and several ENA images of that planet’s magnetosphere.This revised version was published online in July 2005 with a corrected cover date. 相似文献
173.
Robust model following control of parallel buck converters 总被引:1,自引:0,他引:1
Garcera G. Figueres E. Pascual M. Benavent J.M. 《IEEE transactions on aerospace and electronic systems》2004,40(3):983-997
A robust model-following (RMF) control technique for average current mode controlled (ACC) parallel buck dc-dc converters, RMFACC, is presented. RMFACC achieves that the loop gain of the voltage loop is little sensitive to the variation of power stage parameters: number of modules, input voltage, load, and component tolerances. The design of the voltage loop is 'decoupled' from the design of the disturbance rejection transfer functions in an important degree, so that the output impedance and audio susceptibility are greatly reduced without the need of high loop gain crossover frequencies. A comparative study between conventional ACC and RMFACC is shown. 相似文献
174.
Geiss J. Bühler F. Cerutti H. Eberhardt P. Filleux Ch. Meister J. Signer P. 《Space Science Reviews》2004,110(3-4):307-335
Space Science Reviews - The Apollo Solar Wind Composition (SWC) experiment was designed to measure elemental and isotopic abundances of the light noble gases in the solar wind, and to investigate... 相似文献
175.
AeroSuite给出了一个飞行器制造过程有效管理整个产品制造流程的解决方案。它包括FiberSIM复材工艺软件、SyncroFIT机身设计制造装配软件、对于首件鉴定过程的流程化的质量规划模块(QPE)。 相似文献
176.
未来十年,支线发动机维修企业将面对新机型投入运营和老旧飞机淘汰等诸多状况。在此期间,将有三种新支线喷气投入商业运营:以SaM146为动力的苏霍伊超级喷气机SSJ100;以普惠公司的PW1000GTF发动机为动力的三 相似文献
177.
Blunt Shannon D. Shackelford Aaron K. Gerlach Karl Smith Kevin J. 《IEEE transactions on aerospace and electronic systems》2009,45(2):647-659
The effects of target Doppler are addressed in relation to adaptive receive processing for radar pulse compression. To correct for Doppler-induced filter mismatch over a single pulse, the Doppler-compensated adaptive pulse compression (DC-APC) algorithm is presented whereby the respective Doppler shifts for large target returns are jointly estimated with the illuminated range profile and subsequently incorporated into the original APC adaptive receive filter formulation. As a result, the Doppler-mismatch-induced range sidelobes can be suppressed thereby regaining a significant portion of the sensitivity improvement that is possible when applying adaptive pulse compression (APC) without the existence of significant Doppler mismatch. In contrast, instead of compensating for Doppler mismatch, the single pulse imaging (SPI) algorithm generalizes the APC formulation for a bank of Doppler-shifted matched filters thereby producing a sidelobe-suppressed range-Doppler image from the return signal of a single radar pulse which is applicable for targets with substantial variation in Doppler. Both techniques are based on the recently proposed APC algorithm and its generalization, the multistatic adaptive pulse compression (MAPC) algorithm, which have been shown to be effective for the suppression of pulse compression range sidelobes thus dramatically increasing the sensitivity of pulse compression radar. 相似文献
178.
Leslie A. Young S. Alan Stern Harold A. Weaver Fran Bagenal Richard P. Binzel Bonnie Buratti Andrew F. Cheng Dale Cruikshank G. Randall Gladstone William M. Grundy David P. Hinson Mihaly Horanyi Donald E. Jennings Ivan R. Linscott David J. McComas William B. McKinnon Ralph McNutt Jeffery M. Moore Scott Murchie Catherine B. Olkin Carolyn C. Porco Harold Reitsema Dennis C. Reuter John R. Spencer David C. Slater Darrell Strobel Michael E. Summers G. Leonard Tyler 《Space Science Reviews》2008,140(1-4):93-127
The New Horizons spacecraft will achieve a wide range of measurement objectives at the Pluto system, including color and panchromatic maps, 1.25–2.50 micron spectral images for studying surface compositions, and measurements of Pluto’s atmosphere (temperatures, composition, hazes, and the escape rate). Additional measurement objectives include topography, surface temperatures, and the solar wind interaction. The fulfillment of these measurement objectives will broaden our understanding of the Pluto system, such as the origin of the Pluto system, the processes operating on the surface, the volatile transport cycle, and the energetics and chemistry of the atmosphere. The mission, payload, and strawman observing sequences have been designed to achieve the NASA-specified measurement objectives and maximize the science return. The planned observations at the Pluto system will extend our knowledge of other objects formed by giant impact (such as the Earth–moon), other objects formed in the outer solar system (such as comets and other icy dwarf planets), other bodies with surfaces in vapor-pressure equilibrium (such as Triton and Mars), and other bodies with N2:CH4 atmospheres (such as Titan, Triton, and the early Earth). 相似文献
179.
The Ionization Gauge Investigation for the Streak Mission 总被引:1,自引:0,他引:1
J. H. Clemmons L. M. Friesen N. Katz M. Ben-Ami Y. Dotan R. L. Bishop 《Space Science Reviews》2009,145(3-4):263-283
180.
J. Mazur L. Friesen A. Lin D. Mabry N. Katz Y. Dotan J. George J. B. Blake M. Looper M. Redding T. P. O’Brien J. Cha A. Birkitt P. Carranza M. Lalic F. Fuentes R. Galvan M. McNab 《Space Science Reviews》2013,179(1-4):221-261
The Relativistic Proton Spectrometer (RPS) on the Radiation Belt Storm Probes spacecraft is a particle spectrometer designed to measure the flux, angular distribution, and energy spectrum of protons from ~60 MeV to ~2000 MeV. RPS will investigate decades-old questions about the inner Van Allen belt proton environment: a nearby region of space that is relatively unexplored because of the hazards of spacecraft operation there and the difficulties in obtaining accurate proton measurements in an intense penetrating background. RPS is designed to provide the accuracy needed to answer questions about the sources and losses of the inner belt protons and to obtain the measurements required for the next-generation models of trapped protons in the magnetosphere. In addition to detailed information for individual protons, RPS features count rates at a 1-second timescale, internal radiation dosimetry, and information about electrostatic discharge events on the RBSP spacecraft that together will provide new information about space environmental hazards in the Earth’s magnetosphere. 相似文献