首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5416篇
  免费   9篇
  国内免费   18篇
航空   2836篇
航天技术   1920篇
综合类   23篇
航天   664篇
  2021年   30篇
  2019年   32篇
  2018年   57篇
  2017年   31篇
  2014年   82篇
  2013年   132篇
  2012年   107篇
  2011年   155篇
  2010年   114篇
  2009年   177篇
  2008年   245篇
  2007年   136篇
  2006年   140篇
  2005年   143篇
  2004年   114篇
  2003年   170篇
  2002年   101篇
  2001年   176篇
  2000年   109篇
  1999年   140篇
  1998年   164篇
  1997年   123篇
  1996年   169篇
  1995年   215篇
  1994年   182篇
  1993年   120篇
  1992年   127篇
  1991年   76篇
  1990年   62篇
  1989年   138篇
  1988年   62篇
  1987年   66篇
  1986年   60篇
  1985年   195篇
  1984年   150篇
  1983年   130篇
  1982年   133篇
  1981年   176篇
  1980年   58篇
  1979年   41篇
  1978年   50篇
  1977年   53篇
  1976年   38篇
  1975年   59篇
  1974年   38篇
  1973年   42篇
  1972年   51篇
  1971年   42篇
  1970年   44篇
  1969年   37篇
排序方式: 共有5443条查询结果,搜索用时 15 毫秒
131.
Editorial     
  相似文献   
132.
133.
The Small Satellite Technology Initiative (SSTI) is a National Aeronautics and Space Administration (NASA) program to demonstrate smaller, high technology satellites constructed rapidly and less expensively. Under SSTI, NASA funded the development of “Clark,” a high technology demonstration satellite to provide 3-m resolution panchromatic and 15-m resolution multispectral images, as well as collect atmospheric constituent and cosmic x-ray data. The 690-Ib. satellite, to be launched in early 1997, will be in a 476 km, circular, sun-synchronous polar orbit. This paper describes the program objectives, the technical characteristics of the sensors and satellite, image processing, archiving and distribution. Data archiving and distribution will be performed by NASA Stennis Space Center and by the EROS Data Center, Sioux Falls, South Dakota, USA.  相似文献   
134.
135.
The Active Rack Isolation System [ARIS] International Space Station [ISS] Characterization Experiment, or ARIS-ICE for short, is a long duration microgravity characterization experiment aboard the ISS. The objective of the experiment is to fully characterize active microgravity performance of the first ARIS rack deployed on the ISS. Efficient ground and on-orbit command and data handling [C&DH] segments are the crux in achieving the challenging objectives of the mission. The objective of the paper is to provide an overview of the C&DH architectures developed for ARIS-ICE, with the view that these architectures may serve as a model for future ISS microgravity payloads. Both ground and on-orbit segments, and their interaction with corresponding ISS C&DH systems are presented. The heart of the on-orbit segment is the ARIS-ICE Payload On-orbit Processor, ARIS-ICE POP for short. The POP manages communication with the ISS C&DH system and other ISS subsystems and payloads, enables automation of test/data collection sequences, and provides a wide range of utilities such as efficient file downlinks/uplinks, data post-processing, data compression and data storage. The hardware and software architecture of the POP is presented and it is shown that the built-in functionality helps to dramatically streamline the efficiency of on-orbit operations. The ground segment has at its heart special ARIS-ICE Ground Support Equipment [GSE] software developed for the experiment. The software enables efficient command and file uplinks, and reconstruction and display of science telemetry packets. The GSE software architecture is discussed along with its interactions with ISS ground C&DH elements. A test sequence example is used to demonstrate the interplay between the ground and on-orbit segments.  相似文献   
136.
The possibility of an ocean within the icy shell of Jupiter's moon Europa has established that world as a primary candidate in the search for extraterrestrial life within our Solar System. This paper evaluates the potential to detect evidence for microbial life by comparing laboratory studies of terrestrial microorganisms with measurements from the Galileo Near Infrared Imaging Spectrometer (NIMS). If the interior of Europa at one time harbored life, some evidence may remain in the surface materials. Examination of laboratory spectra of terrestrial extremophiles measured at cryogenic temperatures reveals distorted, asymmetric nearinfrared absorption features due to water of hydration. The band centers, widths, and shapes of these features closely match those observed in the Europa spectra. These features are strongest in reddish-brown, disrupted terrains such as linea and chaos regions. Narrow spectral features due to amide bonds in the microbe proteins provide a means of constraining the abundances of such materials using the NIMS data. The NIMS data of disrupted terrains exhibit distorted, asymmetric near-infrared absorption features consistent with the presence of water ice, sulfuric acid octahydrate, hydrated salts, and possibly as much as 0.2 mg cm(-3) of carbonaceous material that could be of biological origin. However, inherent noise in the observations and limitations of spectral sampling must be taken into account when discussing these findings.  相似文献   
137.
Following an enthusiastic start in 1985, ESA's life support technology development programme was re-assessed in the mid- to late-1990s to reflect the strong reduction in European manned space ambitions which occurred at that time. Further development was essentially restricted to activities that could constitute ISS upgrades or enhancements, or support ISS utilisation/operations, together with a single, limited, activity (MELISSA) aimed at bioregenerative life support, in the continuing hope that there might be "life after Station". The paper describes the current status of these activities and summarises the main priorities for future development that were identified at the April 1999 Workshop on Advanced Life Support.  相似文献   
138.
J Arnould 《Acta Astronautica》2001,49(3-10):489-494
Humankind's exploration of Space has until now been understood as analogous to that of planet Earth: sending out crews to far-off, unknown lands in the hope of finding supplies of food, water or energy along with shelter and living-space. But Space is turning out to be much less hospitable than our earthly milieu in terms of resources as well as energy costs. It seems appropriate to ask what level of adaptation is needed for humans to travel and live in the cosmos, and to assess if the next logical step should necessarily be a programme of conquest analogous to that of the Moon--for example, towards Mars. Should we not rather be making more use of Earth's immediate neighbourhood, namely the sphere of a million of kilometres we call "Greater Earth"? In the same way, it is appropriate to ask questions about the conception of human beings which will from now on sustain the conquest of Space. The astronaut of the last forty years is the direct heir of the explorers of Ancient and Modern times; now, through the influence of science and technology, humanity has been put "into motion" not only geographically, but also in its most essential foundations: culture, psychology, philosophy. If the development of telepresence technology now gives us the ability to talk about a "Greater Human Being", it is chiefly through freedom of choice for oneself, for humanity and even for Earth.  相似文献   
139.
Earth's subsurface offers one of the best possible sites to search for microbial life and the characteristic lithologies that life leaves behind. The subterrain may be equally valuable for astrobiology. Where surface conditions are particularly hostile, like on Mars, the subsurface may offer the only habitat for extant lifeforms and access to recognizable biosignatures. We have identified numerous unequivocally biogenic macroscopic, microscopic, and chemical/geochemical cave biosignatures. However, to be especially useful for astrobiology, we are looking for suites of characteristics. Ideally, "biosignature suites" should be both macroscopically and microscopically detectable, independently verifiable by nonmorphological means, and as independent as possible of specific details of life chemistries--demanding (and sometimes conflicting) criteria. Working in fragile, legally protected environments, we developed noninvasive and minimal impact techniques for life and biosignature detection/characterization analogous to Planetary Protection Protocols. Our difficult field conditions have shared limitations common to extraterrestrial robotic and human missions. Thus, the cave/subsurface astrobiology model addresses the most important goals from both scientific and operational points of view. We present details of cave biosignature suites involving manganese and iron oxides, calcite, and sulfur minerals. Suites include morphological fossils, mineral-coated filaments, living microbial mats and preserved biofabrics, 13C and 34S values consistent with microbial metabolism, genetic data, unusual elemental abundances and ratios, and crystallographic mineral forms.  相似文献   
140.
Direct initiation of detonations in gaseous mixtures of C2H2-O2, H2-O2 and H2-Cl2 in the pressure range of 10–150 torr using flash photolysis was studied. Similar to blast initiation using a concentrated powerful energy source, it was found that for photochemical initiation, there exists a certain threshold of flash intensity and energy for each mixture at any given initial pressure and composition below which a deflagration is formed. At the critical threshold, however, a fully developed detonation is rapidly formed in the immediate vicinity of the window of incident UV radiation. However, at super critical flash energies, the amplitude of the detonation formed decreases and combustion of the entire irradiated volume approaches a constant volume explosion. It was found that photo-chemical initiation requires both a certain minimum peak value of the free radical concentration generated by the photo-dissociation as well as an appropriate gradient of this free radical distribution. The minimum peak radical concentration permits rapid reaction rates for the generation of strong pressure waves, while the gradient is necessary for the amplification of the shock waves to a detonation. If the gradient is absent and the free radicals are uniformly distributed in the mixture, then the entire volume simply explodes as in a constant volume process. The present study reveals that the mechanism of photochemical initiation is one of proper temporal synchronization of the chemical energy release to the shock wave as it propagates through the mixture. In analogy to the LASER, the term SWACER is introduced to represent this mechanism of Shock Wave Amplication by Coherent Energy Release. There are strong indications that this SWACER mechanism is universal and plays the main role in the formation of detonations whenever a powerful concentrated external source is not used to generate a strong shock wave in the explosive.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号