首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7682篇
  免费   12篇
  国内免费   24篇
航空   3785篇
航天技术   2686篇
综合类   203篇
航天   1044篇
  2019年   50篇
  2018年   102篇
  2017年   53篇
  2016年   53篇
  2014年   135篇
  2013年   190篇
  2012年   157篇
  2011年   244篇
  2010年   160篇
  2009年   272篇
  2008年   349篇
  2007年   197篇
  2006年   187篇
  2005年   205篇
  2004年   174篇
  2003年   231篇
  2002年   240篇
  2001年   301篇
  2000年   140篇
  1999年   199篇
  1998年   230篇
  1997年   171篇
  1996年   231篇
  1995年   277篇
  1994年   230篇
  1993年   143篇
  1992年   175篇
  1991年   91篇
  1990年   84篇
  1989年   178篇
  1988年   79篇
  1987年   83篇
  1986年   80篇
  1985年   263篇
  1984年   217篇
  1983年   165篇
  1982年   189篇
  1981年   244篇
  1980年   76篇
  1979年   57篇
  1978年   64篇
  1977年   67篇
  1976年   48篇
  1975年   70篇
  1974年   58篇
  1973年   51篇
  1972年   63篇
  1971年   56篇
  1970年   62篇
  1969年   59篇
排序方式: 共有7718条查询结果,搜索用时 31 毫秒
151.
Computer graphics is being employed at the NASA Johnson Space Center as a tool to perform rapid, efficient and economical analyses for man-machine integration, flight operations development and systems engineering. The Operator Station Design System (OSDS), a computer-based facility featuring a highly flexible and versatile interactive software package, PLAID, is described. This unique evaluation tool, with its expanding data base of Space Shuttle elements, various payloads, experiments, crew equipment and man models, supports a multitude of technical evaluations, including spacecraft and workstation layout, definition of astronaut visual access, flight techniques development, cargo integration and crew training. As OSDS is being applied to the Space Shuttle, Orbiter payloads (including the European Space Agency's Spacelab) and future space vehicles and stations, astronaut and systems safety are being enhanced. Typical OSDS examples are presented. By performing physical and operational evaluations during early conceptual phases. supporting systems verification for flight readiness, and applying its capabilities to real-time mission support, the OSDS provides the wherewithal to satisfy a growing need of the current and future space programs for efficient, economical analyses.  相似文献   
152.
Two bed rest analog studies of space flight were performed; one 14 d and the other 28 d in duration. Exercise response was studied in detail during the 28 d study and following both the 14 d and 28 d studies. This paper relates the results of these studies to physiologic changes noted during and following space flight. The most consistent change noted after both bed rest and space flight is an elevated heart rate during exercise. A second consistent finding is a postflight or postbed rest reduction in cardiac stroke volume. Cardiac output changes were variable. The inability to simulate inflight activity levels and personal exercise makes a direct comparison between bed rest and the results from specific space flights difficult.  相似文献   
153.
The present paper reports a kinetic analysis of changes of some physiological parameters, obtained from international literature, after changes in gravitational environment. The overall phenomenology of the adaptation to weightlessness is characterized by a rapid process followed by a slow one. The two processes show half time values differing by about five times. Also in the case of readaptation to gravity, after recovery on the Earth, two well resolved processes, showing different half time values, are observed. It is of interest to notice that the rate of response to weightlessness is lower than that to gravity. Of course, the half time values observed depend on the different physiological parameters considered. In any case, the experimental data suggest a general trend of many adaptive changes, that may all be described by a simple mathematical model.  相似文献   
154.
Prediction that the various stresses of flight, particularly weightlessness, would bring about significant derangements in the metabolism of the musculoskeletal system has been based on various observations of long-term immobilized or inactive bed rest. The only attempt at controlled measurement of metabolic changes in space prior to Skylab, a study during the 14-day Gemini VII flight, revealed rather modest losses of important elements. The three astronauts of Skylab II consumed a planned day-by-day, quite constant, dietary intake of major metabolic elements in mixed foods and beverages and provided virtually complete collections of excreta for 31 days preflight, during the 28 days inflight, and for 17 days postflight. Analyses showed that, in varying degree among the crewmen, urinary calcium increased gradually during flight in a pattern similar to that observed in bed-rest studies: the mean plateau peak of urinary calcium excretion in the latter part of flight was double preflight levels. Fecal calcium excretion did not change significantly, but calcium balance, owing to the urinary calcium rise, became either negative or less positive than in preflight measurement. Increased excretion and negative balance of nitrogen and phosphorus indicated appreciable loss of muscle tissue in all three crewmen. Significant losses also occurred inflight in potassium, sodium, and magnesium. Based on the similarity in pattern and degree between these observations and those in bed rest of the losses in calcium, phosphorus, and nitrogen, musculoskeletal integrity would not be threatened in space flights of up to at least 3 months. However, if similar changes occur, indicative of continuing losses of these elements, in the planned Skylab flights for considerably more than 28 days, concern for capable musculoskeletal function should be serious for flights of very many months' duration, and greater research attention will need to be given to development of protective counter-measures.  相似文献   
155.
In the past, one of the major problems in performing scientific investigations in space has been the high cost of developing, integrating, and transporting scientific experiments into space. The limited resources of unmanned spacecraft, coupled with the requirements for completely automated operations, was another factor contributing to the high costs of scientific research in space. In previous space missions after developing, integrating and transporting costly experiments into space and obtaining successful data, the experiment facility and spacecraft have been lost forever, because they could not be returned to earth. The objective of this paper is to present how the utilization of the Spacelab System will result in cost benefits to the scientific community, and significantly reduce the cost of space operations from previous space programs.The following approach was used to quantify the cost benefits of using the Spacelab System to greatly reduce the operational costs of scientific research in space. An analysis was made of the series of activities required to combine individual scientific experiments into an integrated payload that is compatible with the Space Transportation System (STS). These activities, including Shuttle and Spacelab integration, communications and data processing, launch support requirements, and flight operations were analyzed to indicate how this new space system, when compared with previous space systems, will reduce the cost of space research. It will be shown that utilization of the Spacelab modular design, standard payload interfaces, optional Mission Dependent Equipment (MDE), and standard services, such as the Experiment Computer Operating System (ECOS), allow the user many more services than previous programs, at significantly lower costs. In addition, the missions will also be analyzed to relate their cost benefit contributions to space scientific research.The analytical tools that are being developed at MSFC in the form of computer programs that can rapidly analyze experiment to Spacelab interfaces will be discussed to show how these tools allow the Spacelab integrator to economically establish the payload compatibility of a Spacelab mission.The information used in this paper has been assimilated from the actual experience gained in integrating over 50 highly complex, scientific experiments that will fly on the Spacelab first and second missions. In addition, this paper described the work being done at the Marshall Space Flight Center (MSFC) to define the analytical integration tools and techniques required to economically and efficiently integrate a wide variety of Spacelab payloads and missions. The conclusions reached in this study are based on the actual experience gained at MSFC in its roles of Spacelab integration and mission managers for the first three Spacelab missions. The results of this paper will clearly show that the cost benefits of the Spacelab system will greatly reduce the costs and increase the opportunities for scientific investigation from space.  相似文献   
156.
Fluid and electrolyte shifts occuring during human spaceflight have been reported and investigated at the level of blood, cardio-vascular and renal responses. Very few data were available concerning the cerebral fluid and electrolyte adaptation to microgravity, even in animal models. It is the reason why we developed several studies focused on the effects of spaceflight (SLS-1 and SLS-2 programs, carried on NASA STS 40 and 56 missions, which were 9- and 14-day flights, respectively), on structural and functional features of choroid plexuses, organs which secrete 70–90 % of cerebrospinal fluid (CSF) and which are involved in brain homeostasis. Rats flown aboard space shuttles were sacrificed either in space (SLS-2 experiment, on flight day 13) or 4–8 hours after landing (SLS-1 and SLS-2 experiments). Quantitative autoradiography performed by microdensitometry and image analysis, showed that lateral and third ventricle choroid plexuses from rats flown for SLS-1 experiment demonstrated an increased number (about x 2) of binding sites to natriuretic peptides (which are known to be involved in mechanisms regulating CSF production). Using electron microscopy and immunocytochemistry, we studied the cellular response of choroid plexuses, which produce cerebrospinal fluid (CSF) in brain lateral, third and fourth ventricles. We demonstrated that spaceflight (SLS-2 experiment, inflight samples) induces changes in the choroidal cell structure (apical microvilli, kinocilia organization, vesicle accumulation) and protein distribution or expression (carbonic anhydrase II, water channels,…). These observations suggested a loss of choroidal cell polarity and a decrease in CSF secretion. Hindlimb-suspended rats displayed similar choroidal changes. All together, these results support the hypothesis of a modified CSF production in rats during long-term (9, 13 or 14 days) adaptations to microgravity.  相似文献   
157.
Smirnova  N. V.  Lyakhov  A. N.  Setzer  Yu. I.  Osepian  A. P.  Meng  C.-I.  Smith  R.  Stenbaek-Nielsen  H. C. 《Cosmic Research》2004,42(3):210-218
Spatial distributions of the electron density in the latitude range 60°–90° N were calculated on the basis of a physical model of the E and lower Fregions of the high-latitude ionosphere using statistical models of auroral proton and electron precipitation. It is shown that precipitating protons can play the key role in the ionization of the Eregion in the dusk and midnight sectors of the auroral oval. However, quantitative estimates of the contribution of protons to the ionization depend on the used statistical models of electron precipitation. Comparison of the electron density profiles calculated for two incoherent scatter radars, EISCAT (Tromsö) and ESR (Svalbard), for simultaneous precipitation of electrons and protons and for electron precipitation only show that the influence of protons is the most significant in the dusk sector over the EISCAT radar and in the midnight sector over the ESR radar. The results presented indicate the need to take protons into account when radar data are used to derive precipitating electron spectra.  相似文献   
158.
Major X-33 flight hardware has been delivered, and assembly of the vehicle is well underway in anticipation of its flight test program commencing in the summer of 1999. Attention has now turned to the operational VentureStarTM, the first single-stage-to-orbit (SSTO) reusable launch vehicle. Activities are grouped under two broad categories: (1) vehicle development and (2) market/business planning, each of which is discussed. The mission concept is presented for direct payload delivery to the International Space Station and to low Earth orbit, as well as payload delivery with an upper stage to Geosynchronous Transfer Orbit (GTO) and other high energy orbits. System requirements include flight segment and ground segment. Vehicle system sizing and design status is provided including the application of X-33 traceability and lessons learned. Technology applications to the VentureStarTM are described including the structure, propellant tanks, thermal protection system, aerodynamics, subsystems, payload bay and propulsion. Developing a market driven low cost launch services system for the 21st Century requires traditional and non-traditional ways of being able to forecast the evolution of the potential market. The challenge is balancing both the technical and financial assumptions of the market. This involves the need to provide a capability to meet market segments that in some cases are very speculative, while at the same time providing the financial community with a credible revenue stream. Furthermore, the market derived requirements need to be assessed so as not to impose unnecessary requirements on the vehicle design that add unreasonable cost to the development of the system, yet provides the right capabilities for new markets that could be triggered by dramatically lower space transportation prices.  相似文献   
159.
To meet the significant increase in EVA demand to support assembly and operations of the International Space Station (ISS), NASA and industry have improved the current Shuttle Extravehicular Mobility Unit (EMU), or "space suit", configuration to meet the unique and specific requirements of an orbital-based system. The current Shuttle EMU was designed to be maintained and serviced on the ground between frequent Shuttle flights. ISS will require the EMUs to meet increased EVAs out of the Shuttle Orbiter and to remain on orbit for up to 180 days without need for regular return to Earth for scheduled maintenance or refurbishment. Ongoing Shuttle EMU improvements have increased reliability, operational life and performance while minimizing ground and on-orbit maintenance cost and expendable inventory. Modifications to both the anthropomorphic mobility elements of the Space Suit Assembly (SSA) as well as to the Primary Life Support System (PLSS) are identified and discussed. This paper also addresses the status of on-going Shuttle EMU improvements and summarizes the approach for increasing interoperability of the U.S. and Russian space suits to be utilized aboard the ISS.  相似文献   
160.
The National Space Research Institute (INPE) is developing the first Brazilian Scientific Microsatellite (SACI-1) based on the vanguard technology and on the experience acquired through projects developed by Brazilian Space Program. The SACI-1 is a 750km polar orbit satellite. The spacecraft will combine spin stabilization with geomagnetic control and has a total mass of 60 kg. The overall dimensions are 640×470×470 mm. The SACI-1 satellite shall be launched together with CBERS (China-Brazil Earth Resource Satellite). Its platform is being designed for multiple mission applications. The Brazilian Academy of Sciences has selected four scientific payloads that characterize the mission. The scientific experiments are: ORCAS (Solar and Anomalous Cosmic Rays Observation in the Magnetosphere), PLASMEX (Study of Plasma Bubbles), FOTSAT (Airglow Photometer), and MAGNEX (Geomagnetic Experiment).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号