首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9271篇
  免费   28篇
  国内免费   31篇
航空   4524篇
航天技术   3308篇
综合类   39篇
航天   1459篇
  2021年   65篇
  2019年   62篇
  2018年   148篇
  2017年   93篇
  2016年   83篇
  2014年   181篇
  2013年   246篇
  2012年   226篇
  2011年   318篇
  2010年   216篇
  2009年   357篇
  2008年   436篇
  2007年   249篇
  2006年   233篇
  2005年   260篇
  2004年   233篇
  2003年   303篇
  2002年   192篇
  2001年   300篇
  2000年   191篇
  1999年   226篇
  1998年   272篇
  1997年   201篇
  1996年   260篇
  1995年   323篇
  1994年   303篇
  1993年   166篇
  1992年   221篇
  1991年   115篇
  1990年   97篇
  1989年   228篇
  1988年   89篇
  1987年   95篇
  1986年   107篇
  1985年   292篇
  1984年   237篇
  1983年   206篇
  1982年   222篇
  1981年   268篇
  1980年   95篇
  1979年   63篇
  1978年   78篇
  1977年   71篇
  1976年   58篇
  1975年   79篇
  1974年   64篇
  1973年   61篇
  1972年   68篇
  1971年   59篇
  1970年   64篇
排序方式: 共有9330条查询结果,搜索用时 15 毫秒
131.
Recent successes in the effort to miniaturize spacecraft components using MEMS technology, integrated passive components, and low power electronics have driven the need for very low power, low profile, low mass micro-power sources for micro/nanospacecraft applications. Recent work at JPL has focused upon developing thin film/micro-batteries compatible with temperature sensitive substrates. A process to prepare crystalline LiCoO2 films with RF sputtering and moderate (<700°C) annealing temperature has been developed. Thin film batteries with cathode films prepared with this process have specific capacities approaching the practical limit for LiCoO2, with acceptable rate capabilities and discharge voltage profiles. Solid-state micro-scale batteries have also been fabricated with feature sizes on the order of 50 microns  相似文献   
132.
The focus of resource recovery research at the KSC-CELSS Breadboard Project has been the evaluation of microbiologically mediated biodegradation of crop residues by manipulation of bioreactor process and environmental variables. We will present results from over 3 years of studies that used laboratory- and breadboard-scale (8 and 120 L working volumes, respectively) aerobic, fed-batch, continuous stirred tank reactors (CSTR) for recovery of carbon and minerals from breadboard grown wheat and white potato residues. The paper will focus on the effects of a key process variable--bioreactor retention time--on response variables indicative of bioreactor performance. The goal is to determine the shortest retention time that is feasible for processing CELSS crop residues, thereby reducing bioreactor volume and weight requirements. Pushing the lower limits of bioreactor retention times will provide useful data for engineers who need to compare biological and physicochemical components. Bioreactor retention times were manipulated to range between 0.25 and 48 days. Results indicate that increases in retention time lead to a 4-fold increase in crop residue biodegradation, as measured by both dry weight losses and CO2 production. A similar overall trend was also observed for crop residue fiber (cellulose and hemicellulose), with a noticeable jump in cellulose degradation between the 5.3 day and 10.7 day retention times. Water-soluble organic compounds (measured as soluble TOC) were appreciably reduced by more than 4-fold at all retention times tested. Results from a study of even shorter retention times (down to 0.25 days), in progress, will also be presented.  相似文献   
133.
The Porous Tube Plant Nutrient Delivery System (PTPNDS), a hydrophilic, microporous ceramic tube hydroponic system designed for microgravity, will be tested in a middeck locker of the Space Shuttle. The flight experiment will focus on hardware operation and assess its ability to support seed germination and early seedling growth in microgravity. The water controlling system of the PTPNDS hardware has been successfully tested during the parabolic flight of the KC-135. One challenge to the development of the space flight experiment was to devise a method of holding seeds to the cylindrical porous tube. The seed-holder must provide water and air to the seed, absorb water from the porous tube, withstand sterilization, provide a clear path for shoots and roots to emerge, and be composed of flight qualified materials. In preparation for the flight experiment, a wheat seed-holder has been designed that utilizes a cellulose acetate plug to facilitate imbibition and to hold the wheat seeds in contact with the porous tube in the correct orientation during the vibration of launch and the microgravity environment of orbit. Germination and growth studies with wheat at a range of temperatures showed that optimal moisture was 78% (by weight) in the cellulose acetate seed holders. These and other design considerations are discussed.  相似文献   
134.
The abiogenic synthesis of pyrimidine nucleotides in solid state has been investigated. Our experiment indicates that natural nucleotides are produced in thin films prepared from nucleoside and inorganic phosphate by irradiating with vacuum ultraviolet light (VUV, lambda=100-200 nm). We have investigated the influence of the type of nucleic acids base (thymidine, cytosine, uracil) and the structure of sugar moiety (ribose or deoxyribose) on the course and yield of reaction. We compared the action of vacuum ultraviolet light with action of gamma-radiation, heat and biology significant UV (254 nm) which have been investigated earlier. The occurrence of these reaction in open space is discussed.  相似文献   
135.
136.
Low energy protons and other densely ionizing light ions are known to have RBE>1 for cellular end points relevant for stochastic and deterministic effects. The occurrence of a close relationship between them and induction of DNA dsb is still a matter of debate. We studied the production of DNA dsb in V79 cells irradiated with low energy protons having LET values ranging from 11 to 31 keV/micrometer, i.e. in the energy range characteristic of the Bragg peak, using the sedimentation technique. We found that the initial yield of dsb is quite insensitive to proton LET and not significantly higher than that observed with X-rays, in agreement with recent data on V79 cells irradiated with alpha particles of various LET up to 120 keV/micrometer. By contrast, RBE for cell inactivation and for mutation induction rises with the proton LET. In experiments aimed at evaluating the rejoining of dsb after proton irradiation we found that the amount of dsb left unrepaired after 120 min incubation is higher for protons than for sparsely ionizing radiation. These results indicate that dsb are not homogeneous with respect to repair and give support to the hypothesis that increasing LET leads to an increase in the complexity of DNA lesions with a consequent decrease in their repairability.  相似文献   
137.
Previously, K. Bakhtar and E. Sagal [ibid. vol. 17, pp. 4-11, 2002] made remarkable claims for the performance of the Bakhtar Associates ground-penetrating radar (GPR) in detecting and classifying buried unexploded ordnance (UXO). In this article, we report the results of the series of blind tests on the EarthRadar carried out during the Fall of 2000 and Spring of 2001, which led to very different conclusions regarding the radar's performance. The contents of this article are excerpted from the final report on the testing, prepared by the Institute for Defense Analyses  相似文献   
138.
This article highlights the first results of investigations on the general vitality and damage endpoints caused by cosmic ionizing radiation in dry, dormant plant seeds of the crucifer plant Arabidopsis thaliana (L.) Heynh. and the ascomycete Sordaria fimicola after 69 month stay in space. Wild-type and mutant gene marker lines were included in Free Flyer Biostack containers and exposed on earth and side tray of the LDEF-1 satellite. The damage in biological endpoints observed in the seeds increased in the side tray sample compared to the earth tray sample. For the ascospores we found different effects depending on the biological endpoints investigated for both expositions.  相似文献   
139.
In the multistage theory of carcinogenesis, cells progress to cancer through a series of discrete, irreversible, heritable genetic alterations or mutations. However data on radiation-induced cancer incidence in rat skin suggests that some part of an intermediate repairable alteration may occur. Data are presented on cancer induction in rat skin exposed to the following radiations: 1. an electron beam (LET=0.34 keV/um, 2. a neon ion beam (LET=25 keV/um and 3. an argon ion beam (LET=125 keV/um. The latter 2 beams were generated by the Bevalac at the Lawrence Berkeley Laboratory, Berkeley, CA. About 6.0 cm2 of skin was irradiated per rat. The rats were observed every 6 weeks for at least 78 weeks and tumors were scored at first occurrence. Several histological types of cancer, including squamous and basal cell carcinomas, were induced. The cancer yield versus radiation dose was fitted by the quadratic equation (Y(D)=CLD+BD2), and the parameters C and B were estimated for each type of radiation. Analysis of the DNA from the electron-induced carcinomas indicated that K-ras and/or c-myc oncogenes were activated in all tumors tested, although only a small proportion of neon-induced tumors showed similar activation. In situ hybridization indicated that the cancers contain subpopulations of cells with differing amounts of c-myc and H-ras amplification. The results are consistent with the idea that ionizing radiation produces carcinogenically relevant lesions via 2 repairable events at low LET and via a non-repairable, linked event pathway at high LET; either pathway may advance the cell by 1 stage in the multistage model. The model, if validated, permits the direct calculation of cancer risk in rat skin in a way that can be subjected to experimental testing.  相似文献   
140.
Cultured endothelial cells of blood vessels have a Do of 2 Gy for X-rays. A dose of 0.5 Gy of X-rays has an acute effect on vessel diameter. The vessels may show other acute effects such as change in permeability including a change in the blood brain barrier. Changes occurring from late effects of chronic exposure in vascular architecture include telangiectasia and decrease in vascular density. Changes in the perivascular connective tissue particularly collagen may play a role in these changes. After charged particle exposure of 15 and 30 Gy, radiation changes in the blood brain barrier and vascular changes are noted in the nervous system. These long term changes are recorded by PET, MRI, and CT imaging. Chronic exposure to alpha particles causes vascular damage in compact bone resulting in bone infarcts. Using tandem scanning confocal microscopy in-situ imaging of the capillaries and collagen of the papillary dermis provides a non-invasive method of serial recording of changes in irradiated microvasculature.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号