首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5452篇
  免费   9篇
  国内免费   18篇
航空   2860篇
航天技术   1920篇
综合类   23篇
航天   676篇
  2021年   30篇
  2019年   33篇
  2018年   57篇
  2017年   31篇
  2014年   83篇
  2013年   134篇
  2012年   107篇
  2011年   156篇
  2010年   118篇
  2009年   180篇
  2008年   247篇
  2007年   140篇
  2006年   141篇
  2005年   144篇
  2004年   114篇
  2003年   171篇
  2002年   104篇
  2001年   176篇
  2000年   109篇
  1999年   140篇
  1998年   164篇
  1997年   124篇
  1996年   169篇
  1995年   215篇
  1994年   182篇
  1993年   120篇
  1992年   127篇
  1991年   76篇
  1990年   62篇
  1989年   138篇
  1988年   62篇
  1987年   67篇
  1986年   61篇
  1985年   196篇
  1984年   150篇
  1983年   132篇
  1982年   133篇
  1981年   176篇
  1980年   60篇
  1979年   41篇
  1978年   50篇
  1977年   53篇
  1976年   38篇
  1975年   59篇
  1974年   38篇
  1973年   42篇
  1972年   51篇
  1971年   42篇
  1970年   44篇
  1969年   37篇
排序方式: 共有5479条查询结果,搜索用时 0 毫秒
81.
In the past, one of the major problems in performing scientific investigations in space has been the high cost of developing, integrating, and transporting scientific experiments into space. The limited resources of unmanned spacecraft, coupled with the requirements for completely automated operations, was another factor contributing to the high costs of scientific research in space. In previous space missions after developing, integrating and transporting costly experiments into space and obtaining successful data, the experiment facility and spacecraft have been lost forever, because they could not be returned to earth. The objective of this paper is to present how the utilization of the Spacelab System will result in cost benefits to the scientific community, and significantly reduce the cost of space operations from previous space programs.The following approach was used to quantify the cost benefits of using the Spacelab System to greatly reduce the operational costs of scientific research in space. An analysis was made of the series of activities required to combine individual scientific experiments into an integrated payload that is compatible with the Space Transportation System (STS). These activities, including Shuttle and Spacelab integration, communications and data processing, launch support requirements, and flight operations were analyzed to indicate how this new space system, when compared with previous space systems, will reduce the cost of space research. It will be shown that utilization of the Spacelab modular design, standard payload interfaces, optional Mission Dependent Equipment (MDE), and standard services, such as the Experiment Computer Operating System (ECOS), allow the user many more services than previous programs, at significantly lower costs. In addition, the missions will also be analyzed to relate their cost benefit contributions to space scientific research.The analytical tools that are being developed at MSFC in the form of computer programs that can rapidly analyze experiment to Spacelab interfaces will be discussed to show how these tools allow the Spacelab integrator to economically establish the payload compatibility of a Spacelab mission.The information used in this paper has been assimilated from the actual experience gained in integrating over 50 highly complex, scientific experiments that will fly on the Spacelab first and second missions. In addition, this paper described the work being done at the Marshall Space Flight Center (MSFC) to define the analytical integration tools and techniques required to economically and efficiently integrate a wide variety of Spacelab payloads and missions. The conclusions reached in this study are based on the actual experience gained at MSFC in its roles of Spacelab integration and mission managers for the first three Spacelab missions. The results of this paper will clearly show that the cost benefits of the Spacelab system will greatly reduce the costs and increase the opportunities for scientific investigation from space.  相似文献   
82.
Fluid and electrolyte shifts occuring during human spaceflight have been reported and investigated at the level of blood, cardio-vascular and renal responses. Very few data were available concerning the cerebral fluid and electrolyte adaptation to microgravity, even in animal models. It is the reason why we developed several studies focused on the effects of spaceflight (SLS-1 and SLS-2 programs, carried on NASA STS 40 and 56 missions, which were 9- and 14-day flights, respectively), on structural and functional features of choroid plexuses, organs which secrete 70–90 % of cerebrospinal fluid (CSF) and which are involved in brain homeostasis. Rats flown aboard space shuttles were sacrificed either in space (SLS-2 experiment, on flight day 13) or 4–8 hours after landing (SLS-1 and SLS-2 experiments). Quantitative autoradiography performed by microdensitometry and image analysis, showed that lateral and third ventricle choroid plexuses from rats flown for SLS-1 experiment demonstrated an increased number (about x 2) of binding sites to natriuretic peptides (which are known to be involved in mechanisms regulating CSF production). Using electron microscopy and immunocytochemistry, we studied the cellular response of choroid plexuses, which produce cerebrospinal fluid (CSF) in brain lateral, third and fourth ventricles. We demonstrated that spaceflight (SLS-2 experiment, inflight samples) induces changes in the choroidal cell structure (apical microvilli, kinocilia organization, vesicle accumulation) and protein distribution or expression (carbonic anhydrase II, water channels,…). These observations suggested a loss of choroidal cell polarity and a decrease in CSF secretion. Hindlimb-suspended rats displayed similar choroidal changes. All together, these results support the hypothesis of a modified CSF production in rats during long-term (9, 13 or 14 days) adaptations to microgravity.  相似文献   
83.
A major problem with operations of lifting reentry vehicle having an aft center-of-gravity location due to large engine mass at the rear is the required hypersonic trim to fight the desired trajectory. This condition is most severe for lifting maneuvers. As a first step toward analyzing this problem, this paper considers the lift requirement for some basic maneuvers in the plane of a great circle. Considerations are given to optimal lift control for achieving the maximization of either the final altitude, speed or range. For the maximum-range problem, phugoid oscillation along an optimal trajectory is less severe as compared to a glide with maximum lift-to-drag ratio. An explicit formula for the number of oscillations for an entry from orbital speed is proposed.  相似文献   
84.
In August, 1981, the Westerbork Synthesis Radio Telescope was used for 4 h to search for narrowband pulsing radio beacons in the direction of the Galactic Center. By using both the spatial discrimination and temporal stability available to an interferometric measurement, weak intermittent signals can be detected even in the face of the strong, naturally caused radiation from this region. A radio beacon within our bandwidth, centered on the 21 cm neutral hydrogen line, would be recognizable if it had a repetition period between 40 sec and 1/2 h. The rms sensitivity to point sources was approximately 50 mJy/cycle, and the detection limit was 500 mJy/cycle. The limit degrades for pulse widths < 0.02s. No repetitive signals were found. For a swept, narrow-band radio beacon constrained to the Galactic Disk (beamwidth = 0.02 rad), our detection limit corresponds to a transmitter power of 10(11) MW at the Galactic Center.  相似文献   
85.
The INTEGRAL satellite has been successfully launched in October 2002 and has recently started its operational phase. The INTEGRAL burst alert system (IBAS) will distribute in real time the coordinates of the gamma ray bursts (GRBs) detected with INTEGRAL. After a brief introduction on the INTEGRAL instruments, we describe the main IBAS characteristics and report on the initial results. During the initial performance and verification phase of the INTEGRAL mission, which lasted about two months, two GRBs have been localized with accuracy of 2–4 arcmin. These observations have allowed us to validate the IBAS software, which is now expected to provide quick (few seconds delay) and precise (few arcmin) localization for 10–15 GRBs per year.  相似文献   
86.
The atmosphere of Mars has many of the ingredients that can be used to support human exploration missions. It can be "mined" and processed to produce oxygen, buffer gas, and water, resulting in significant savings on mission costs. The use of local materials, called ISRU (for in-situ resource utilization), is clearly an essential strategy for a long-term human presence on Mars from the standpoints of self-sufficiency, safety, and cost. Currently a substantial effort is underway by NASA to develop technologies and designs of chemical plants to make propellants from the Martian atmosphere. Consumables for life support, such as oxygen and water, will probably benefit greatly from this ISRU technology development for propellant production. However, the buffer gas needed to dilute oxygen for breathing is not a product of a propellant production plant. The buffer gas needs on each human Mars mission will probably be in the order of metric tons, primarily due to losses during airlock activity. Buffer gas can be separated, compressed, and purified from the Mars atmosphere. This paper discusses the buffer gas needs for a human mission to Mars and consider architectures for the generation of buffer gas including an option that integrates it to the propellant production plant.  相似文献   
87.
Eight characteristics of the unique suite of amino acids and hydroxy acids found in the Murchison meteorite can be recognized on the basis of detailed molecular and isotopic analyses. The marked structural correspondence between the alpha-amino acids and alpha-hydroxy acids and the high deuterium/hydrogen ratio argue persuasively for their formation by aqueous phase Strecker reactions in the meteorite parent body from presolar, i.e., interstellar, aldehydes, ketones, ammonia, and hydrogen cyanide. The characteristics of the meteoritic suite of amino acids and hydroxy acids are briefly enumerated and discussed with regard to their consonance with this interstellar-parent body formation hypothesis. The hypothesis has interesting implications for the organic composition of both the primitive parent body and the presolar nebula.  相似文献   
88.
An evaluation of the exposure of space travelers to galactic cosmic radiation outside the earth's magnetosphere is made by calculating fluences of high-energy primary and secondary particles with various charges traversing a sphere of area 100 microns2. Calculations relating to two shielding configurations are presented: the center of a spherical aluminum shell of thickness 1 g/cm2, and the center of a 4 g/cm2 thick aluminum spherical shell within which there is a 30 g/cm2 diameter spherical water phantom with the point of interest 5 g/cm2 from the surface. The area of 100 microns2 was chosen to simulate the nucleus of a cell in the body. The frequencies as a function of charge component in both shielding configurations reflects the odd-even disparity of the incident particle abundances. For a three-year mission, 33% of the cells in the more heavily shielded configuration would be hit by at least one particle with Z greater than 10. Six percent would be hit by at least two such particles. This emphasizes the importance of studying single high-Z particle effects both on cells which might be "at risk" for cancer induction and on critical neural cells or networks which might be vulnerable to inactivation by heavy charged particle tracks. Synergistic effects with the more numerous high-energy protons and helium ions cannot be ruled out. In terms of more conventional radiation risk assessment, the dose equivalent decreased by a factor of 2.85 from free space to that in the more heavily shielded configuration. Roughly half of this was due to the decrease in energy deposition (absorbed dose) and half to the decrease in biological effectiveness (quality factor).  相似文献   
89.
The existence of a “dense” lunar ionosphere has been controversial for decades. Positive ions produced from the lunar surface and exosphere are inferred to have densities that are ?106107 m?3 near the surface and smaller at higher altitudes, yet electron densities derived from radio occultation measurements occasionally exceed these values by orders of magnitude. For example, about 4% of the single-spacecraft radio occultation measurements from Kaguya/SELENE were consistent with peak electron densities of ~3×108 m?3. Space plasmas should be neutral on macroscopic scales, so this represents a substantial discrepancy. Aditional observations of electron densities in the lunar ionosphere are critical to resolving this longstanding paradox. Here we theoretically assess whether radio occultation observations using two-way coherent S-band radio signals from the Lunar Reconnaissance Orbiter (LRO) spacecraft could provide useful measurements of electron densities in the lunar ionosphere. We predict the uncertainty in a single LRO radio occultation measurement of electron density to be ~3×108 m?3, comparable to occasional observations by Kaguya/SELENE of a dense lunar ionosphere. Thus an individual profile from LRO is unlikely to reliably detect the lunar ionosphere; however, averages of multiple (~10) LRO profiles acquired under similar geophysical and viewing conditions should be able to make reliable detections. An observing rate of six ingress occultations per day (~2000 per year) could be achieved with minimal impact on current LRO operations. This rate compares favorably with the 378 observations reported from the single-spacecraft experiment on Kaguya/SELENE between November 2007 and June 2009. The large number of observations possible for LRO would be sufficient to permit wide-ranging investigations of spatial and temporal variations in the poorly understood lunar ionosphere. These findings strengthen efforts to conduct such observations with LRO.  相似文献   
90.
The problem of surface tension-driven flows in horizontal liquid layers has been studied experimentally, and theoretically by direct numerical simulation and small perturbation analysis. We focus our attention on situations in which the depth of the fluid (liquid tin; small Prandtl number, Pr=0.015) is small enough to ensure the predominance of the surface tension forces over those due to the buoyancy. The surface velocity has been experimentally obtained for liquid tin layer with various aspect ratio (length to height) in the range 5<A<83. The thermal gradients are ranged from 5 to 40°K/cm. In the numerical study, the Navier-Stokes and energy equations are solved by an efficient finite difference technique. The parameters governing the flow behaviour in the liquid are varied to determine their effects on thermocapillary convection: the Reynolds number 10<Re<2104 and the aspect ratio 2<A<25; with Pr kept constant at Pr=0.015. The linear eigenequation resulting from small spatial disturbances of the Couette flow solution is solved using an Tau-Chebyshev approximation. A notable feature of the theoretical study is the totally different end circulations. In the region near the cold wall a multicell structure is evident. This agrees with the eigensolution which is of complex type, indicating spatial periodicity. In the hot wall region the flow is accelerated to reach the velocity value for the fully-developed Couette flow which is reached under conditions such as Re/A<20. The transition from viscous to boundary layer regime occurs for a critical value (Re/A)c of nearly about 200, as deduced from the numerical and experimental results.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号