首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6810篇
  免费   15篇
  国内免费   24篇
航空   3482篇
航天技术   2394篇
综合类   31篇
航天   942篇
  2021年   46篇
  2018年   84篇
  2017年   44篇
  2016年   43篇
  2014年   118篇
  2013年   162篇
  2012年   137篇
  2011年   214篇
  2010年   156篇
  2009年   229篇
  2008年   298篇
  2007年   164篇
  2006年   168篇
  2005年   175篇
  2004年   150篇
  2003年   212篇
  2002年   123篇
  2001年   213篇
  2000年   130篇
  1999年   170篇
  1998年   208篇
  1997年   141篇
  1996年   209篇
  1995年   256篇
  1994年   214篇
  1993年   144篇
  1992年   167篇
  1991年   98篇
  1990年   77篇
  1989年   170篇
  1988年   77篇
  1987年   79篇
  1986年   73篇
  1985年   244篇
  1984年   181篇
  1983年   167篇
  1982年   172篇
  1981年   221篇
  1980年   74篇
  1979年   60篇
  1978年   69篇
  1977年   68篇
  1976年   53篇
  1975年   71篇
  1974年   57篇
  1973年   48篇
  1972年   61篇
  1971年   45篇
  1970年   58篇
  1969年   52篇
排序方式: 共有6849条查询结果,搜索用时 546 毫秒
941.
Twenty-first century littoral and open-sea missions present US Navy (USN) shipboard-radar systems with the challenge of detecting small targets in severe clutter and against multiple sources of interference. In Fiscal Year 2000 (FY00), the Office of Naval Research (ONR) sponsored a program to develop an active array radar that includes a digital beamforming (DBF) architecture. The DBF radar system has the potential for improved time-energy management, improved signal-to-clutter (S/C) ratios, improved reliability and reduced life-cycle costs. This paper summarizes the latest developments of the program during FY00  相似文献   
942.
Prolonged exposure to microgravity in space flight missions (days) impairs the mechanisms responsible for defense of arterial blood pressure (ABP) and cardiac output (CO) against orthostatic stress in the post-flight period. The mechanisms responsible for the observed orthostatic intolerance are not yet completely understood. Additionally, effective counter measures to attenuate this pathophysiological response are not available. The aim of this study was to investigate the ability of our proposed system identification method to predict closed-loop dynamic changes in TPR induced by changes in mean arterial pressure (MAP) and right atrial pressure (RAP). For this purpose we designed and employed a novel experimental animal model for the examination of arterial and cardiopulmonary baroreceptors in the dynamic closed-loop control of total peripheral resistance (TPR), and applied system identification to the analysis of beat-to-beat fluctuations in the measured signals. Grant numbers: NAG5-4989.  相似文献   
943.
We describe the application of three formal design tools to a case study in the design of a distributed system. The case study in question involves the specification of an asynchronous message router; the three design tools are process algebra (specifically Milner's Calculus of Communicating Systems CCS), the modal μ-calculus and the Edinburgh Concurrency Workbench (CWB). We demonstrate how an informally-presented specification can be formalised within the language of the modal μ-calculus, allowing for a rigorous mathematical analysis of the correctness of our proposed implementation. For modest-sized versions of the router, this correctness proof has been carried out using the CWB  相似文献   
944.
Development of an advanced rocket propellant handler's suit.   总被引:2,自引:0,他引:2  
D F Doerr 《Acta Astronautica》2001,49(3-10):463-468
Most launch vehicles and satellites in the US inventory rely upon the use of hypergolic rocket propellants, many of which are toxic to humans. These fuels and oxidizers, such as hydrazine and nitrogen tetroxide have threshold limit values as low as 0.01 PPM. It is essential to provide space workers handling these agents whole body protection as they are universally hazardous not only to the respiratory system, but the skin as well. This paper describes a new method for powering a whole body protective garment to assure the safety of ground servicing crews. A new technology has been developed through the small business innovative research program at the Kennedy Space Center. Currently, liquid air is used in the environmental control unit (ECU) that powers the propellant handlers suit (PHE). However, liquid air exhibits problems with attitude dependence, oxygen enrichment, and difficulty with reliable quantity measurement. The new technology employs the storage of the supply air as a supercritical gas. This method of air storage overcomes all of three problems above while maintaining high density storage at relatively low vessel pressures (<7000 kPa or approximately 1000 psi). A one hour prototype ECU was developed and tested to prove the feasibility of this concept. This was upgraded by the design of a larger supercritical dewar capable of holding 7 Kg of air, a supply which provides a 2 hour duration to the PHE. A third version is being developed to test the feasibility of replacing existing air cooling methodology with a liquid cooled garment for relief of heat stress in this warm Florida environment. Testing of the first one hour prototype yielded data comparable to the liquid air powered predecessor, but enjoyed advantages of attitude independence and oxygen level stability. Thermal data revealed heat stress relief at least as good as liquid air supplied units. The application of supercritical air technology to this whole body protective ensemble marked an advancement in the state-of-the-art in personal protective equipment. Not only was long duration environmental control provided, but it was done without a high pressure vessel. The unit met human performance needs for attitude independence, oxygen stability and relief of heat stress. This supercritical air (and oxygen) technology is suggested for microgravity applications in life support such as the Extravehicular Mobility Unit.  相似文献   
945.
A ceramic material having a large dielectric constant at 77 K, ε=8000-12000, has been developed for capacitive energy storage at this temperature. A large matrix of multilayer ceramic capacitors were fabricated using conventional tape-casting methods to optimize the dielectric breakdown strength at 77 K, and measured energy storage values on these capacitors range up to 6 J/cm3 at 77 K. An unfused bank of these capacitors was voltage-cycled 105 times at 77 K without failure, and the heating effects during cycling were immeasurably small (i.e., nitrogen boiloff was monitored). An electrocaloric effect on discharge (ΔT~1 K) contributes to the thermal stability. Measurements of the frequency dependence of the dielectric properties of the ceramic at 77 K indicate a fundamental limit of about 8 μs for the switching repetition rate. Improved capacitor-manufacturing methods are discussed which can increase the energy density to the 20-30 J/cm3 range  相似文献   
946.
In radar systems, extended Kalman-Bucy filters (EKBFs) are used to estimate state vectors of objects in track. Filter models accounting for fundamental aerodynamic forces on reentry vehicles are well known. A general model structure accommodating the dynamics of reentry vehicles in both exoatmospheric and endoatmospheric flight is presented. The associated EKBFs for these various models are described and the resulting associated parameter estimation and identification problems are discussed. The effects of position, velocity, drag, and aerodynamic lift are described within a nested set of EKBF models  相似文献   
947.
Two methods for constructing robust polarimetric constant-false-alarm-rate (CFAR) detectors that use elements of the scattering matrix are discussed. Both methods use robust estimators to recognize outliers and exclude them from further calculations. The first method weighs each sample of the surrounding vectors, and vectors that appear to be outliers are weighted with lower values than the others. The second method uses cluster algorithms to arrange the data in different clusters; some clusters contain the outliers, and others contain observations assumed to come from the main body of the data. The detectors are intended to be used in multitarget and nonhomogeneous-clutter environments  相似文献   
948.
949.
950.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号