全文获取类型
收费全文 | 7597篇 |
免费 | 30篇 |
国内免费 | 23篇 |
专业分类
航空 | 3895篇 |
航天技术 | 2652篇 |
综合类 | 33篇 |
航天 | 1070篇 |
出版年
2021年 | 52篇 |
2019年 | 53篇 |
2018年 | 99篇 |
2017年 | 64篇 |
2016年 | 59篇 |
2014年 | 139篇 |
2013年 | 181篇 |
2012年 | 163篇 |
2011年 | 228篇 |
2010年 | 166篇 |
2009年 | 259篇 |
2008年 | 343篇 |
2007年 | 188篇 |
2006年 | 185篇 |
2005年 | 187篇 |
2004年 | 171篇 |
2003年 | 249篇 |
2002年 | 147篇 |
2001年 | 255篇 |
2000年 | 152篇 |
1999年 | 189篇 |
1998年 | 233篇 |
1997年 | 160篇 |
1996年 | 209篇 |
1995年 | 275篇 |
1994年 | 251篇 |
1993年 | 150篇 |
1992年 | 185篇 |
1991年 | 99篇 |
1990年 | 92篇 |
1989年 | 198篇 |
1988年 | 88篇 |
1987年 | 88篇 |
1986年 | 89篇 |
1985年 | 254篇 |
1984年 | 206篇 |
1983年 | 181篇 |
1982年 | 193篇 |
1981年 | 231篇 |
1980年 | 81篇 |
1979年 | 61篇 |
1978年 | 68篇 |
1977年 | 69篇 |
1976年 | 49篇 |
1975年 | 87篇 |
1974年 | 53篇 |
1973年 | 53篇 |
1972年 | 75篇 |
1971年 | 56篇 |
1970年 | 54篇 |
排序方式: 共有7650条查询结果,搜索用时 15 毫秒
151.
W. Menn O. Adriani G.C. Barbarino G.A. Bazilevskaya R. Bellotti M. Boezio E.A. Bogomolov L. Bonechi M. Bongi V. Bonvicini S. Borisov S. Bottai A. Bruno F. Cafagna D. Campana R. Carbone P. Carlson M. Casolino G. Castellini L. Consiglio M.P. De Pascale C. De Santis N. De Simone V. Di Felice A.M. Galper W. Gillard L. Grishantseva G. Jerse A.V. Karelin S.V. Koldashov S.Y. Krutkov A.N. Kvashnin A. Leonov V. Malakhov V. Malvezzi L. Marcelli A.G. Mayorov V.V. Mikhailov E. Mocchiutti A. Monaco N. Mori N. Nikonov G. Osteria F. Palma P. Papini M. Pearce P. Picozza C. Pizzolotto M. Ricci S.B. Ricciarini 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2013
152.
J.R. Souza W.D. Asevedo Jr. P.C.P. dos Santos A. Petry G.J. Bailey I.S. Batista M.A. Abdu 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2013
We describe a new version of the Parameterized Regional Ionospheric Model (PARIM) which has been modified to include the longitudinal dependences. This model has been reconstructed using multidimensional Fourier series. To validate PARIM results, the South America maps of critical frequencies for the E (foE) and F (foF2) regions were compared with the values calculated by Sheffield Plasmasphere-Ionosphere Model (SUPIM) and IRI representations. PARIM presents very good results, the general characteristics of both regions, mainly the presence of the equatorial ionization anomaly, were well reproduced for equinoctial conditions of solar minimum and maximum. The values of foF2 and hmF2 recorded over Jicamarca (12°S; 77°W; dip lat. 1°N; mag. declination 0.3°) and sites of the conjugate point equatorial experiment (COPEX) campaign Boa Vista (2.8°N; 60.7°W; dip lat. 11.4°; mag. declination −13.1°), Cachimbo (9.5°S; 54.8°W; dip lat. −1.8°; mag. declination −15.5°), and Campo Grande (20.4°S; 54.6°W; dip lat. −11.1°; mag. declination −14.0°) have been used in this work. foF2 calculated by PARIM show good agreement with the observations, except during morning over Boa Vista and midnight-morning over Campo Grande. Some discrepancies were also found for the F-region peak height (hmF2) near the geomagnetic equator during times of F3 layer occurrences. IRI has underestimated both foF2 and hmF2 over equatorial and low latitude sectors during evening-nighttimes, except for Jicamarca where foF2 values were overestimated. 相似文献
153.
C. Satirapod I. Trisirisatayawong L. Fleitout J.D. Garaud W.J.F. Simons 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2013
Following previous findings from ongoing GPS research in Thailand since 2004 we continue to exploit the GPS technique to monitor and model land motions induced by the Sumatra–Andaman Earthquake. Our latest results show that up to the end of 2010, Thailand has been co-seismically displaced and is subsequently undergoing a post-seismic horizontal deformation with total displacements (co-seismic plus post-seismic) ranging from 10.5 to 74.7 cm. We observed the largest horizontal displacements in the southern part of Thailand and moderate and small displacements in the central and northern parts. In addition to horizontal displacements throughout Thailand, continuous GPS measurements show that large parts of Thailand are subsiding at rates up to 1 cm/yr. It is the first time that such vertical post-seismic deformations at large distances (650–1500 km away from the Earthquake’s epicentre) have been recorded. We have investigated the physical processes leading to the observed subsidence. While after-slip on the subduction interface induces negligible or even slightly positive vertical motions, relaxation in the asthenosphere is associated with a sizable subsidence. Predictions from a 3D finite element model feature an asthenosphere with an effective viscosity of the order of 3 * 1018 Pas, fit the horizontal post-seismic data and the observed subsidence well. This model is then used to predict the subsidence over the whole seismic cycle. The subsidence should go on with a diminishing rate through the next two decades and its final magnitude should not exceed 10 cm in the Bangkok area. 相似文献
154.
S.A. Melachroinos F.G. Lemoine N.P. Zelensky D.D. Rowlands S.B. Luthcke O. Bordyugov 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2013
We compute a series of Jason-2 GPS and SLR/DORIS-based orbits using ITRF2005 and the std0905 standards ( Lemoine et al., 2010). Our GPS and SLR/DORIS orbit data sets span a period of 2 years from cycle 3 (July 2008) to cycle 74 (July 2010). We extract the Jason-2 orbit frame translational parameters per cycle by the means of a Helmert transformation between a set of reference orbits and a set of test orbits. We compare the annual terms of these time-series to the annual terms of two different geocenter motion models where biases and trends have been removed. Subsequently, we include the annual terms of the modeled geocenter motion as a degree-1 loading displacement correction to the GPS and SLR/DORIS tracking network of the POD process. Although the annual geocenter motion correction would reflect a stationary signal in time, under ideal conditions, the whole geocenter motion is a non-stationary process that includes secular trends. Our results suggest that our GSFC Jason-2 GPS-based orbits are closely tied to the center of mass (CM) of the Earth consistent with our current force modeling, whereas GSFC’s SLR/DORIS-based orbits are tied to the origin of ITRF2005, which is the center of figure (CF) for sub-secular scales. We quantify the GPS and SLR/DORIS orbit centering and how this impacts the orbit radial error over the globe, which is assimilated into mean sea level (MSL) error, from the omission of the annual term of the geocenter correction. We find that for the SLR/DORIS std0905 orbits, currently used by the oceanographic community, only the negligence of the annual term of the geocenter motion correction results in a – 4.67 ± 3.40 mm error in the Z-component of the orbit frame which creates 1.06 ± 2.66 mm of systematic error in the MSL estimates, mainly due to the uneven distribution of the oceans between the North and South hemisphere. 相似文献
155.
R. Sridharan Tirtha Pratim Das S.M. Ahmed Gogulapati Supriya Anil Bhardwaj J.A. Kamalakar 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2013
In the past, clues on the potential radiogenic activity of the lunar interior have been obtained from the isotopic composition of noble gases like Argon. Excess Argon (40) relative to Argon (36), as compared to the solar wind composition, is generally ascribed to the radiogenic activity of the lunar interior. Almost all the previous estimates were based on, ‘on-the-spot’ measurements from the landing sites. Relative concentration of the isotopes of 40Ar and 36Ar along a meridian by the Chandra’s Altitudinal Composition Explorer (CHACE) experiment, on the Moon Impact Probe (MIP) of India’s first mission to Moon, has independently yielded clues on the possible spatial heterogeneity in the radiogenic activity of the lunar interior in addition to providing indicative ‘antiquity’ of the lunar surface along the ground track over the near side of the moon. These results are shown to broadly corroborate the independent topography measurements by the Lunar Laser Ranging Instrument (LLRI) in the main orbiter Chandrayaan-1. The unique combination of these experiments provided high spatial resolution data while indicating the possible close linkages between the lunar interior and the lunar ambience. 相似文献
156.
J.P. Pabari Y.B. Acharya U.B. Desai S.N. Merchant 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2013
It is known that a wireless sensor network uses some sort of sensors to detect a physical quantity of interest, in general. The wireless sensor network is a potential tool for exploring the difficult-to-access area on the earth and the concept may be extended to space applications in future. Recently, lunar water has been detected by a few lunar missions using remote sensing techniques. The lunar water is expected to be in the form of ice at very low temperatures of permanently dark regions on the moon. To support the remote observations and also to find out potential ice bearing sites on the moon, in-situ measurement of the lunar ice is essential. However, a rover may not be able to reach the permanently shadowed regions due to terrain irregularity. One possibility to access such areas is to use a wireless sensor network on the lunar surface. 相似文献
157.
F.M. D’ujanga P. Baki J.O. Olwendo B.F. Twinamasiko 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2013
The equatorial ionosphere has been known to become highly disturbed and thus rendering space-based navigation unreliable during space weather events, such as geomagnetic storms. Modern navigation systems, such as the Global Positioning System (GPS) use radio-wave signals that reflect from or propagate through the ionosphere as a means of determining range or distance. Such systems are vulnerable to effects caused by geomagnetic storms, and their performance can be severely degraded. This paper analyses total electron content (TEC) and the corresponding GPS scintillations using two GPS SCINDA receivers located at Makerere University, Uganda (Lat: 0.3o N; Lon: 32.5o E) and at the University of Nairobi, Kenya (Lat: 1.3o S; Lon: 36.8o E), both in East Africa. The analysis shows that the scintillations actually correspond to plasma bubbles. The occurrence of plasma bubbles at one station was correlated with those at the other station by using observations from the same satellite. It was noted that some bubbles develop at one station and presumably “die off” before reaching the other station. The paper also discusses the effects of the geomagnetic storm of the 24–25 October 2011 on the ionospheric TEC at the two East African stations. Reductions in the diurnal TEC at the two stations during the period of the storm were observed and the TEC depletions observed during that period showed much deeper depletions than on the non-storm days. The effects during the storm have been attributed to the uplift of the ionospheric plasma, which was then transported away from this region by diffusion along magnetic field lines. 相似文献
158.
Alicia L. Clúa de Gonzalez Walter D. Gonzalez 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2013
In the present paper the local-time variations in the disturbance of the geomagnetic-field horizontal component (H) for eight intense geomagnetic storms that occurred during the descending phase of solar cycle 23 have been analyzed. The study was based on the plot of contour lines of the H-depletion intensity in the plane local time versus universal time (LT–UT maps) with the objective of observing how the morphology and evolution of the ring current is mapped into the surface of the Earth in presence of intense geomagnetic storms. 相似文献
159.
V. Satya Srinivas A.D. Sarma K.C.T. Swamy K. Satyanarayana 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2013
International Reference Ionosphere (IRI) model is the widely used empirical model for ionospheric predictions, especially TEC which is an important parameter for radio navigation and communication. The Fortran based IRI-2007 does not support real-time interactive visualization and debugging. Therefore, the source code is converted into Matlab and is validated for the purposes of this study. This facilitates easy representation of results and for near real-time implementation of IRI in the applications including spacecraft launching, now casting, pseudolite based navigation systems etc. In addition, the vertical delay results over the equatorial region derived from IRI and GPS data of three IGS stations namely Libreville (Garbon, Africa), Brasilia (Brazil, South America) and Hyderabad (India, Asia) are compared. As the IRI model does not account for plasmasphere TEC, the vertical delays are underestimated compared to vertical delays of GPS signals. Therefore, the model should be modified accordingly for precise TEC estimation. 相似文献
160.
Vitali Braun A. LüpkenS. Flegel J. GelhausM. Möckel C. KebschullC. Wiedemann P. Vörsmann 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2013
Today’s space debris environment shows major concentrations of objects within distinct orbital regions for nearly all size regimes. The most critical region is found at orbital altitudes near 800 km with high declinations. Within this region many satellites are operated in so called sun-synchronous orbits (SSO). Among those, there are Earth observation, communication and weather satellites. Due to the orbital geometry in SSO, head-on encounters with relative velocities of about 15 km/s are most probable and would thus result in highly energetic collisions, which are often referred to as catastrophic collisions, leading to the complete fragmentation of the participating objects. So called feedback collisions can then be triggered by the newly generated fragments, thus leading to a further population increase in the affected orbital region. This effect is known as the Kessler syndrome. 相似文献