首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5418篇
  免费   13篇
  国内免费   11篇
航空   2836篇
航天技术   1920篇
综合类   23篇
航天   663篇
  2021年   30篇
  2019年   32篇
  2018年   57篇
  2017年   31篇
  2014年   82篇
  2013年   132篇
  2012年   107篇
  2011年   155篇
  2010年   114篇
  2009年   177篇
  2008年   245篇
  2007年   136篇
  2006年   140篇
  2005年   143篇
  2004年   114篇
  2003年   170篇
  2002年   101篇
  2001年   176篇
  2000年   109篇
  1999年   140篇
  1998年   164篇
  1997年   123篇
  1996年   169篇
  1995年   215篇
  1994年   182篇
  1993年   120篇
  1992年   127篇
  1991年   76篇
  1990年   62篇
  1989年   138篇
  1988年   62篇
  1987年   66篇
  1986年   60篇
  1985年   195篇
  1984年   150篇
  1983年   130篇
  1982年   133篇
  1981年   176篇
  1980年   58篇
  1979年   41篇
  1978年   50篇
  1977年   53篇
  1976年   38篇
  1975年   58篇
  1974年   38篇
  1973年   42篇
  1972年   51篇
  1971年   42篇
  1970年   44篇
  1969年   37篇
排序方式: 共有5442条查询结果,搜索用时 15 毫秒
841.
    
  相似文献   
842.
843.
    
The water content of magma oceans is widely accepted as a key factor that determines whether a terrestrial planet is habitable. Water ocean mass is determined as a result not only of water delivery and loss, but also of water partitioning among several reservoirs. Here we review our current understanding of water partitioning among the atmosphere, magma ocean, and solid mantle of accreting planetary embryos and protoplanets just after giant collisions. Magma oceans are readily formed in planetary embryos and protoplanets in their accretion phase. Significant amounts of water are partitioned into magma oceans, provided the planetary building blocks are water-rich enough. Particularly important but still quite uncertain issues are how much water the planetary building blocks contain initially and how water goes out of the solidifying mantle and is finally degassed to the atmosphere. Constraints from both solar-system explorations and exoplanet observations and also from laboratory experiments are needed to resolve these issues.  相似文献   
844.
The past decade has seen a wealth of new data, mainly from the Galilean satellites and Mars, but also new information on Mercury, the Moon and asteroids (meteorites). In parallel, there have been advances in our understanding of dynamo theory, new ideas on the scaling laws for field amplitudes, and a deeper appreciation on the diversity and complexity of planetary interior properties and evolutions. Most planetary magnetic fields arise from dynamos, past or present, and planetary dynamos generally arise from thermal or compositional convection in fluid regions of large radial extent. The relevant electrical conductivities range from metallic values to values that may be only about one percent or less that of a typical metal, appropriate to ionic fluids and semiconductors. In all planetary liquid cores, the Coriolis force is dynamically important. The maintenance and persistence of convection appears to be easy in gas giants and ice-rich giants, but is not assured in terrestrial planets because the quite high electrical conductivity of an iron-rich core guarantees a high thermal conductivity (through the Wiedemann-Franz law), which allows for a large core heat flow by conduction alone. This has led to an emphasis on the possible role of ongoing differentiation (growth of an inner core or “snow”). Although planetary dynamos mostly appear to operate with an internal field that is not very different from (2ρΩ/σ)1/2 in SI units where ρ is the fluid density, Ω is the planetary rotation rate and σ is the conductivity, theoretical arguments and stellar observations suggest that there may be better justification for a scaling law that emphasizes the buoyancy flux. Earth, Ganymede, Jupiter, Saturn, Uranus, Neptune, and probably Mercury have dynamos, Mars has large remanent magnetism from an ancient dynamo, and the Moon might also require an ancient dynamo. Venus is devoid of a detectable global field but may have had a dynamo in the past. Even small, differentiated planetesimals (asteroids) may have been capable of dynamo action early in the solar system history. Induced fields observed in Europa and Callisto indicate the strong likelihood of water oceans in these bodies. The presence or absence of a dynamo in a terrestrial body (including Ganymede) appears to depend mainly on the thermal histories and energy sources of these bodies, especially the convective state of the silicate mantle and the existence and history of a growing inner solid core. As a consequence, the understanding of planetary magnetic fields depends as much on our understanding of the history and material properties of planets as it does on our understanding of the dynamo process. Future developments can be expected in our understanding of the criterion for a dynamo and on planetary properties, through a combination of theoretical work, numerical simulations, planetary missions (MESSENGER, Juno, etc.) and laboratory experiments.  相似文献   
845.
The facts presented represent, for convenience, a composite clinical picture of the three crewmen aboard Skylab II as observed by me.  相似文献   
846.
    
This paper addresses the problem of nonlinear filter design to estimate the relative position and velocity of an unmanned air vehicle (UAV) with respect to a point on a ship using infrared (IR) vision, inertial, and air data sensors. Sufficient conditions are derived for the existence of a particular type of complementary filters with guaranteed stability and performance in the presence of so-called out-of-frame events that arise when the vision system loses its target temporarily. The results obtained build upon new developments in the theory of linear parametrically varying systems (LPVs) with brief instabilities - also reported in the paper - and provide the proper framework to deal with out-of-frame events. Field tests with a prototype UAV illustrate the performance of the filter and the scope of applications of the new theory developed.  相似文献   
847.
This paper describes the Magnetic Electron Ion Spectrometer (MagEIS) instruments aboard the RBSP spacecraft from an instrumentation and engineering point of view. There are four magnetic spectrometers aboard each of the two spacecraft, one low-energy unit (20–240 keV), two medium-energy units (80–1200 keV), and a high-energy unit (800–4800 keV). The high unit also contains a proton telescope (55 keV–20 MeV). The magnetic spectrometers focus electrons within a selected energy pass band upon a focal plane of several silicon detectors where pulse-height analysis is used to determine if the energy of the incident electron is appropriate for the electron momentum selected by the magnet. Thus each event is a two-parameter analysis, an approach leading to a greatly reduced background. The physics of these instruments are described in detail followed by the engineering implementation. The data outputs are described, and examples of the calibration results and early flight data presented.  相似文献   
848.
    
The use of 12 GHz satellites for TV broadcasting directly to individual homes and small communities has been the subject of analysis and design study by groups in many countries. Implementation of the concept has been slow to follow because of the high satellite transmitter powers of from 100 to 450 W that have usually been determined to be necessary. Accumulated experience in Canada with 12 GHz operation and the evolution of technology are leading to changes in the concept of direct broadcasting such that lower power satellites may be capable of meeting the requirements.

Hermes, the Canadian/U.S. 12/14 GHz Communications Technology Satellite, has been in use for over 3 years in a program of experiments and measurements. This program has included an extensive six month experiment in direct broadcasting to 7 small communities. Experience with Hermes has shown that the signal strength is stable over long periods of time and that in Canada, significant precipitation attenuation at 12 GHz is of relatively short duration and typically occurs only during certain seasons. Operation with low propagation margins is feasible if some picture degradation and some outages at these times are acceptable. The frequency and duration of occurrence of outages can be controlled by the Earth station G/T which is cost sensitive. An individual may choose to use a low cost system with a small antenna and accept a degraded picture and outages at some times. A small community may choose to pay more for a larger antenna and lower noise receiver to achieve better performance.

Developments in technology are reducing the noise figure of mass-producible receivers from more than 6 dB to as low as 4 dB. Another technology contribution is the use of reduced bandwidth and other signal processing techniques in low-cost receivers. While use of such techniques may introduce distortions that would be unacceptable in rebroadcasting systems, there is little impact for individual and community reception. Use of both technologies reduce the required satellite EIRP or ground terminal G/T.

A field trial was begun in April 1979 to test these concepts for use in television program delivery. One hundred Earth stations capable of being tuned across a 500 MHz band and having antennas with diameters of either 1.2 m or 1.8 m are being installed for a test in Canada to receive TV signals from the 20 W transponders of ANIK-B (peak EIRP of 51 dBw) on an experimental basis. The acceptability of the video signals and the technical performance of the low-cost terminals in the bands of non-technical users are being evaluated.

The paper will summarize the concept of TV broadcasting with lower power satellites and describe the results to date of the ANIK-B field trials.  相似文献   

849.
850.
Electro Energy Inc. (EEI) is developing high power, long life, bipolar nickel-metal hydride batteries for aerospace applications. Bipolar nickel-metal hydride designs allow for high energy and high power designs with a 25 percent reduction in both weight and volume as compared to prismatic and/or cylindrical Ni-MH designs. Utilizing a sealed wafer cell design EEI has demonstrated a 1.2 kW/kg power capability. Prototype designs have achieved 70 Wh/kg. Designs studies show 80 Wh/kg are achievable with EEI's state-of-the-art technology. The sealed wafer cell is the building block for EEI's high power and high voltage bipolar batteries making the assembly easy and significantly lower in cost. Satellite and aircraft batteries are being developed which provide high power and long life. Sealed cells now show excellent rate capability and life. Cells tested in a low earth orbit (LEO) cycle have reached 9000 cycles and continue on test. High power, bipolar battery designs are ideal in applications where using conventional aerospace battery technology would require excessive capacity; weight and volume, thereby reducing usable payload on the vehicle  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号