首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7070篇
  免费   14篇
  国内免费   23篇
航空   3581篇
航天技术   2487篇
综合类   35篇
航天   1004篇
  2021年   45篇
  2019年   45篇
  2018年   98篇
  2017年   54篇
  2016年   51篇
  2014年   119篇
  2013年   193篇
  2012年   150篇
  2011年   217篇
  2010年   166篇
  2009年   263篇
  2008年   326篇
  2007年   173篇
  2006年   182篇
  2005年   189篇
  2004年   157篇
  2003年   215篇
  2002年   125篇
  2001年   242篇
  2000年   140篇
  1999年   181篇
  1998年   204篇
  1997年   156篇
  1996年   209篇
  1995年   251篇
  1994年   236篇
  1993年   145篇
  1992年   156篇
  1991年   86篇
  1990年   78篇
  1989年   164篇
  1988年   81篇
  1987年   79篇
  1986年   82篇
  1985年   244篇
  1984年   202篇
  1983年   157篇
  1982年   183篇
  1981年   223篇
  1980年   70篇
  1979年   49篇
  1978年   69篇
  1977年   58篇
  1975年   76篇
  1974年   50篇
  1973年   52篇
  1972年   63篇
  1971年   50篇
  1970年   52篇
  1969年   46篇
排序方式: 共有7107条查询结果,搜索用时 78 毫秒
731.
The microwave CLFM study was directed to generating 14 ?s S-band pulses of 1000 MHz bandwidth and an rms phase error of a few degrees. Over 972 MHz bandwidth, the sampled phase error relative to the reference was 7 degrees rms and 17 degrees peak, with a maximum Fourier component of 4 degrees. The FM pulse train is generated by a gated BWO driven by a stable linearizing waveform. Phase coherency during each pulse is obtained by a sampling technique, where the phase is corrected at intervals of 1/6 ?s, the RF phase having changed an integral number of cycles in each interval. Multiplication of the BWO signal by the sampling pulse train results in band-limited phase error pulses which are applied in a feedback loop. Pulse-to-pulse coherency is obtained by phase lock of the BWO starting frequency to the crystal reference. Feedback leveling holds the output constant to 0.3 dB. The basic MITRE technique was originally demonstrated at 10 MHz in 1964. Range results measured with the X-band model radar using the CLFM generator are given and confirm the phase errors of the CLFM.  相似文献   
732.
733.
Measuring temperatures, mechanical loads and derived quantities precisely and reliably play an important role in spaceflight. With spacecraft becoming increasingly complex, upscaling of present telemetry techniques can become cumbersome. Additionally, there are entirely new sensory requirements, resulting from emerging technologies such as smart structures, active vibration damping and composite material health monitoring. It has been demonstrated in preceding studies that these measurements can be advantageously and efficiently carried out by means of fiber-optic systems. The most prominent fiber-optic strain and temperature sensor is the fiber Bragg grating. Typically, multiple fiber Bragg gratings are used to translate entire temperature and strain fields into an optical wavelength information. For the interrogation of these sensors, a broadband or scanning light source is required. Additional requirements with respect to the light source are high intensity and unpolarized illumination of the gratings. These constraints can be met by a light source that is based on amplified spontaneous emission in a rare-earth-doped fiber. In the presented work, a compact light source, adapted for measurement applications and targeted towards space applications, has been developed. The design of this light source is presented, as well as its implementation. The light source has been designed and tested for selected core aspects of space robustness and the results of these tests are summarized.  相似文献   
734.
“Mars-105” experiment was executed in March–July 2009 in Moscow, at the Institute for Bio-Medical Problems (IBMP) with participation of European Space Agency (ESA) to simulate some specific conditions of future piloted Mars mission. In the last 35 days of isolation, in order to simulate autonomous flight conditions, some serious restrictions were established for the crew resupply and communication with Mission Control (MC). The objective of the study was to investigate psychophysiological and behavioral aspects (communication) of adaptation during this period of “high autonomy”. We used computerized analysis of the crew written daily reports to calculate the frequencies of utilization of certain semantic units, expressing different psychological functions. To estimate the level of psycho-physiological stress, we measured the concentration of urinal cortisol once in two weeks. To investigate psycho-emotional state, we used the questionnaire SAN, estimating Mood, Activity and Health once in two weeks.During the simulation of autonomous flight, we found out the different tendencies of communicative behavior. One group of subjects demonstrated the tendency to “activation and self-government” under “high autonomy” conditions. The other subjects continued to use communicative strategy that we called “closing the communication channel”. “Active” communication strategy was accompanied by increasing in subjective scores of mood and activity. The subjects, whose communication strategy was attributed as “closing”, demonstrated the considerably lower subjective scores of mood and activity. Period of high autonomy causes specific changes in communication strategies of the isolated crew.  相似文献   
735.
In the slow solar wind, elements with (first) ionisation potential (FIP) between ∼10 eV and 22 eV are depleted by a factor of about 4 relative to their abundances in the Outer Convective Zone (OCZ), and helium (FIP = 24.5 eV) is further depleted by a factor of ∼1.8. This depletion, called the FIP effect, is much less pronounced in the high speed streams coming out of coronal holes. The systematics of element depletion suggests that the FIP effect is produced at a temperature ∼104 K and that it is controlled by the time of ionisation at the solar surface. At the boundary of the polar coronal holes, the transition from a strong to a weak FIP effect is relatively sharp and coincides with the change in coronal electron temperature, indicating a profound change in coronal as well as chromospheric properties at this boundary. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   
736.
737.
A method of modeling the total electron content (TEC) based on the semi-empirical ionospheric model developed in Irkutsk State University is suggested. Comparison with the Klobuchar model has shown that the proposed method provides a more accurate presentation of TEC. A conclusion is drawn that the use of this method for compensation of the ionospheric error in single-frequency navigation receivers would lead to a substantial increase in the accuracy of their positioning.  相似文献   
738.
The OPAL monochromatic opacity tables are used to evaluate the impact of a non-standard chemical composition on solar models. A calibrated solar model with consistent diffusion including the effect of radiative forces and ionization on drift velocities is presented. It is shown that surface abundances are predicted to change slightly more than in traditional solar models where these refinements are not included. All elements included in the model settle at similar rates which is reflected in the relative variation in surface abundances ranging from 7.5% for calcium to 8.8% for argon. The structural difference between the consistent model and the traditional model is small, with a maximum effect of 0.3% for the isothermal sound speed at the base of the convection zone. The settling of CNO is only marginally affected. Opacity profiles have also been calculated with varying abundances for volatile elements, for which the abundances are poorly known, and other selected elements. It is shown that if one allows a 10% variation of these elements individually one can expect a peak Rosseland mean opacity variation of 3% for oxygen, a little less 2% for Si and Ne, and around 1% for Mg and S in the radiative zone. Other light metals and volatile elements have no significant impact on the opacity. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   
739.
Classical bearings-only target-motion analysis (TMA) is restricted to sources with constant motion parameters (usually position and velocity). However, most interesting sources have maneuvering abilities, thus degrading the performance of classical TMA. In the passive sonar context a long-time source-observer encounter is realistic, so the source maneuver possibilities may be important in regard to the source and array baseline. This advocates for the consideration and modeling of the whole source trajectory including source maneuver uncertainty. With that aim, a convenient framework is the hidden Markov model (HMM). A basic idea consists of a two-levels discretization of the state-space. The probabilities of position transition are deduced from the probabilities of velocity transitions which, themselves, are directly related to the source maneuvering capability. The source state sequence estimation is achieved by means of classical dynamic programming (DP). This approach does not require any prior information relative to the source maneuvers. However, the probabilistic nature of the source trajectory confers a major role to the optimization of the observer maneuvers. This problem is then solved by using the general framework of the Markov decision process (MDP)  相似文献   
740.
Experiments and calculations on the trajectories of micron-sized spheres, suspended in a fluid that fills a dosed container which rotates about an axis perpendicular to g, relate to the planning and interpretation of clinostat experiments. For low Reynolds number motion, the orbits are nearly circular, the radius being inversely proportional to the rotation rate. The swimming direction of micro-organisms can be affected by light, gravity, vorticity etc. The trajectories of algae swimming in steadily rotating environments have been observed and compared with theoretical predictions for ideal gyrotactic micro-organisms, thus providing some insights into the mechanisms of gravitaxis, gyrotaxis and the behaviour of the cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号