首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   22篇
  免费   0篇
航空   3篇
航天技术   11篇
航天   8篇
  2022年   1篇
  2019年   2篇
  2018年   1篇
  2014年   2篇
  2013年   3篇
  2011年   4篇
  2010年   1篇
  2008年   1篇
  2002年   1篇
  2000年   1篇
  1999年   2篇
  1998年   1篇
  1994年   1篇
  1984年   1篇
排序方式: 共有22条查询结果,搜索用时 578 毫秒
11.
SVET Space Greenhouse (SG)--the first automated facility for growing of higher plants in microgravity was designed in the eighty years to be used for the future BLSS. The first successful experiment with vegetables was carried out in 1990 on the MIR Space Station (SS). The experiments in SVET SG were resumed in 1995, when an American Gas Exchange Measurement System (GEMS) was added. A three-month wheat experiment was carried out as part of MIR-SHUTTLE'95 program. SVET-2 SG Bulgarian equipment of a new generation with optimised characteristics was developed (financed by NASA). The new SVET-GEMS equipment was launched on board the MIR SS and a successful six-month experiments for growing up of two crops of wheat were conducted in 1996 - 97 as part of MIR-NASA-3 program. The first of these "Greenhouse" experiments (123 days) with the goal to grow wheat through a complete life cycle is described. Nearly 300 heads developed but no seeds were produced. A second crop of wheat was planted and after 42 days the plants were frozen for biochemical investigations. The main environmental parameters during the six-month experiments in SVET (substrate moisture and lighting period) are given. The results and the contribution to BLSS are discussed.  相似文献   
12.
This paper describes and analyses the economics of a power relay system that takes advantage of recent technological advances to implement a system that is economically viable. A series of power relay systems are described which transport power ranging from 1250 to 5000 MW and distribute it to receiving sites at transcontinental distances. It is shown that, when offering electricity at prices competitive to those prevalent in developed cities in the USA, that a low IRR is inevitable, and economic feasibility of a business is unlikely. However, when the target market is Japan, where the prevalent electricity prices are much higher an IRR exceeding 65% is readily attainable. This is extremely attractive to potential investors, making capitalization of a venture likely. The paper shows that the capital investment required for the system can be less than $1 per installed watt, contributing less than 0.02 $ to the cost of energy provision. Since selling prices in feasible regions range from 0.18 to over 0.30 $, these costs are but a small fraction of the operating expenses. Thus a very large IRR is possible for such a business.  相似文献   
13.
Space Science Reviews - We review novel data analysis techniques developed or adapted for the field of coronal seismology. We focus on methods from the last ten years that were developed for...  相似文献   
14.
We survey some obstacles that a chemist encounters in defining conditions for radiation chemical experiments relevant to cometary nuclei. The choice of working conditions is examined in the light to present knowledge about comets and the facilities available for routine work in radiation chemistry.  相似文献   
15.
Here we review the efforts of a number of recent results that use old tracers to understand the build up of the Galaxy. Details that lead directly to using these old tracers to measure distances are discussed. We concentrate on the following: (1) the structure and evolution of the Galactic bulge and inner Galaxy constrained from the dynamics of individual stars residing therein; (2) the spatial structure of the old Galactic bulge through photometric observations of RR Lyrae-type stars; (3) the three-dimensional structure, stellar density, mass, chemical composition, and age of the Milky Way bulge as traced by its old stellar populations; (4) an overview of RR Lyrae stars known in the ultra-faint dwarfs and their relation to the Galactic halo; and (5) different approaches for estimating absolute and relative cluster ages.  相似文献   
16.
Spaceborne altimeters are common instruments onboard the deep space rendezvous spacecrafts. They provide range and topographic measurements critical in spacecraft navigation. Simultaneously, the receiver part may be utilized for Earth-to-satellite link, one way time transfer, and precise optical radiometry. The main advantage of single photon counting approach is the ability of processing signals with very low signal-to-noise ratio eliminating the need of large telescopes and high power laser source. Extremely small, rugged and compact microchip lasers can be employed. The major limiting factor, on the other hand, is the acquisition time needed to gather sufficient volume of data in repetitive measurements in order to process and evaluate the data appropriately. Statistical signal processing is adopted to detect signals with average strength much lower than one photon per measurement. A comprehensive simulator design and range signal processing algorithm are presented to identify a mission specific altimeter configuration. Typical mission scenarios (celestial body surface landing and topographical mapping) are simulated and evaluated. The high interest and promising single photon altimeter applications are low-orbit (∼10 km) and low-radial velocity (several m/s) topographical mapping (asteroids, Phobos and Deimos) and landing altimetry (∼10 km) where range evaluation repetition rates of ∼100 Hz and 0.1 m precision may be achieved. Moon landing and asteroid Itokawa topographical mapping scenario simulations are discussed in more detail.  相似文献   
17.
In this experimental study, cells of the radiation-resistant bacterium Deinococcus radiodurans were exposed to several different sources of radiation chosen to replicate the charged particles found in the solar wind. Naked cells or cells mixed with dust grains (basalt or sandstone) differing in elemental composition were exposed to electrons, protons, and ions to determine the probability of cell survival after irradiation. Doses necessary to reduce the viability of cell population to 10% (LD(10)) were determined under different experimental conditions. The results of this study indicate that low-energy particle radiation (2-4?keV), typically present in the slow component of the solar wind, had no effect on dehydrated cells, even if exposed at fluences only reached in more than 1000 years at Sun-Earth distance (1 AU). Higher-energy ions (200?keV) found in solar flares would inactivate 90% of exposed cells after several events in less than 1 year at 1 AU. When mixed with dust grains, LD(10) increases about 10-fold. These results show that, compared to the highly deleterious effects of UV radiation, solar wind charged particles are relatively benign, and organisms protected under grains from UV radiation would also be protected from the charged particles considered in this study.  相似文献   
18.
The topside ionosphere scale height extracted from two empirical models are compared in the paper. The Topside Sounder Model (TSM) provides directly the scale height (HT), while the incoherent scatter radar ionospheric model (ISRIM) provides electron density profiles and its scale height (HR) is determined by the lowest gradient in the topside part of the profile. HT and HR are presented for 7 ISR locations along with their dependences on season, local time, solar flux F10.7, and geomagnetic index ap. Comparison reveals that HT values are systematically lower than respective HR values as the average offset for all 7 stations is 55 km. For the midlatitude stations Arecibo, Shigaraki, and Millstone Hill this difference is reduced to 43 km. The range of variations of HR is much larger than that of HT, as the HT range overlaps the lower part of the HR range. Dependences on ap, DoY and LT are much stronger in the ISRIM than in TSM. This results in much larger values of HR at higher ap. Diurnal amplitude of HR is much larger than that of HT, with large maximum of HR at night. The present comparison yields the conclusion that the ISR measurements provide steeper topside Ne profiles than that provided by the topside sounders.  相似文献   
19.
The paper describes operation of 'SVET' space greenhouse onboard the 'MIR' orbital station since 15 June 1990 and the adopted biotechnological principles. The microprocessor and measuring systems for monitoring and control of the environmental parameters in the Plants growth chamber are presented. Information about the dynamic of these parameters in the course of the first space experiments with vegetables, obtained by means of telemetric data processing, is given. A draft program for the development of next generations of greenhouses of the same type as 'SVET', but with a larger area and capabilities, is worked out.  相似文献   
20.
The SVET Space Greenhouse (SG)--the first and the only automated plant growth facility onboard the MIR Space Station in the period 1990-2000 was developed on a Russian-Bulgarian Project in the 80s. The aim was to study plant growth under microgravity in order to include plants as a link of future Biological Life Support Systems for the long-term manned space missions. An American developed Gas Exchange Measurement System (GEMS) was added to the existing SVET SG equipment in 1995 to monitor more environmental and physiological parameters. A lot of long-duration plant flight experiments were carried out in the SVET+GEMS. They led to significant results in the Fundamental Gravitational Biology field--second-generation wheat seeds were produced in the conditions of microgravity. The new International Space Station (ISS) will provide a perfect opportunity for conducting full life cycle plant experiments in microgravity, including measurement of more vital plant parameters, during the next 15-20 years. Nowadays plant growth facilities for scientific research based on the SVET SG functional principles are developed for the ISS by different countries (Russia, USA, Italy, Japan, etc.). A new Concept for an advanced SVET-3 Space Greenhouse for the ISS, based on the Bulgarian experience and "know-how" is described. The absolute and differential plant chamber air parameters and some plant physiological parameters are measured and processed in real time. Using the transpiration and photosynthesis measurement data the Control Unit evaluates the plant status and performs adaptive environmental control in order to provide the most favorable conditions for plant growth at every stage of plant development in experiments. A conceptual block-diagram of the SVET-3 SG is presented.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号