首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   46篇
  免费   0篇
  国内免费   1篇
航空   25篇
航天技术   12篇
综合类   2篇
航天   8篇
  2022年   1篇
  2021年   1篇
  2018年   4篇
  2016年   1篇
  2015年   1篇
  2014年   3篇
  2013年   1篇
  2012年   2篇
  2011年   3篇
  2010年   2篇
  2009年   5篇
  2008年   2篇
  2007年   7篇
  2006年   3篇
  2005年   1篇
  2004年   1篇
  2003年   2篇
  2001年   1篇
  1997年   1篇
  1995年   2篇
  1992年   1篇
  1985年   1篇
  1981年   1篇
排序方式: 共有47条查询结果,搜索用时 390 毫秒
31.
Mars Science Laboratory Mission and Science Investigation   总被引:5,自引:0,他引:5  
Scheduled to land in August of 2012, the Mars Science Laboratory (MSL) Mission was initiated to explore the habitability of Mars. This includes both modern environments as well as ancient environments recorded by the stratigraphic rock record preserved at the Gale crater landing site. The Curiosity rover has a designed lifetime of at least one Mars year (~23?months), and drive capability of at least 20?km. Curiosity’s science payload was specifically assembled to assess habitability and includes a gas chromatograph-mass spectrometer and gas analyzer that will search for organic carbon in rocks, regolith fines, and the atmosphere (SAM instrument); an x-ray diffractometer that will determine mineralogical diversity (CheMin instrument); focusable cameras that can image landscapes and rock/regolith textures in natural color (MAHLI, MARDI, and Mastcam instruments); an alpha-particle x-ray spectrometer for in situ determination of rock and soil chemistry (APXS instrument); a?laser-induced breakdown spectrometer to remotely sense the chemical composition of rocks and minerals (ChemCam instrument); an active neutron spectrometer designed to search for water in rocks/regolith (DAN instrument); a weather station to measure modern-day environmental variables (REMS instrument); and a sensor designed for continuous monitoring of background solar and cosmic radiation (RAD instrument). The various payload elements will work together to detect and study potential sampling targets with remote and in situ measurements; to acquire samples of rock, soil, and atmosphere and analyze them in onboard analytical instruments; and to observe the environment around the rover. The 155-km diameter Gale crater was chosen as Curiosity’s field site based on several attributes: an interior mountain of ancient flat-lying strata extending almost 5?km above the elevation of the landing site; the lower few hundred meters of the mountain show a progression with relative age from clay-bearing to sulfate-bearing strata, separated by an unconformity from overlying likely anhydrous strata; the landing ellipse is characterized by a mixture of alluvial fan and high thermal inertia/high albedo stratified deposits; and a number of stratigraphically/geomorphically distinct fluvial features. Samples of the crater wall and rim rock, and more recent to currently active surface materials also may be studied. Gale has a well-defined regional context and strong evidence for a progression through multiple potentially habitable environments. These environments are represented by a stratigraphic record of extraordinary extent, and insure preservation of a rich record of the environmental history of early Mars. The interior mountain of Gale Crater has been informally designated at Mount Sharp, in honor of the pioneering planetary scientist Robert Sharp. The major subsystems of the MSL Project consist of a single rover (with science payload), a Multi-Mission Radioisotope Thermoelectric Generator, an Earth-Mars cruise stage, an entry, descent, and landing system, a launch vehicle, and the mission operations and ground data systems. The primary communication path for downlink is relay through the Mars Reconnaissance Orbiter. The primary path for uplink to the rover is Direct-from-Earth. The secondary paths for downlink are Direct-to-Earth and relay through the Mars Odyssey orbiter. Curiosity is a scaled version of the 6-wheel drive, 4-wheel steering, rocker bogie system from the Mars Exploration Rovers (MER) Spirit and Opportunity and the Mars Pathfinder Sojourner. Like Spirit and Opportunity, Curiosity offers three primary modes of navigation: blind-drive, visual odometry, and visual odometry with hazard avoidance. Creation of terrain maps based on HiRISE (High Resolution Imaging Science Experiment) and other remote sensing data were used to conduct simulated driving with Curiosity in these various modes, and allowed selection of the Gale crater landing site which requires climbing the base of a mountain to achieve its primary science goals. The Sample Acquisition, Processing, and Handling (SA/SPaH) subsystem is responsible for the acquisition of rock and soil samples from the Martian surface and the processing of these samples into fine particles that are then distributed to the analytical science instruments. The SA/SPaH subsystem is also responsible for the placement of the two contact instruments (APXS, MAHLI) on rock and soil targets. SA/SPaH consists of a robotic arm and turret-mounted devices on the end of the arm, which include a drill, brush, soil scoop, sample processing device, and the mechanical and electrical interfaces to the two contact science instruments. SA/SPaH also includes drill bit boxes, the organic check material, and an observation tray, which are all mounted on the front of the rover, and inlet cover mechanisms that are placed over the SAM and CheMin solid sample inlet tubes on the rover top deck.  相似文献   
32.
Some problems of methane-containing hydrocarbon fuel combustion are discussed. It seems that reduction of methane burnout zone length is one from main problems of designing new type engine. It is very important at the creation of combustion chambers of a rocket-ramjet engine for prospective space shuttle launch vehicles.  相似文献   
33.
The tilted rotator model is considered using the collisionless supersonic and superalfvenic approximation. The results show that the maximal and minimal solar wind corotating stream velocities appear at the intermediate heliospheric latitudes depending on the tilt angle. The high-speed streams with the strongest velocity difference between maximal and minimal values are expected to be observed at the middle heliolatitudes near 45 degrees. Other consequences of the model are indicated and may be checked during the rapid pole-to-pole Ulysses passage in 1994–1995.  相似文献   
34.
Numerical models of the thermal budget of the Earth's upper atmosphere in the height range of 90–500km are developed. The main sources and sinks of energy including infra-red radiative cooling by vibrational-rotational bands of NO, CO2, OH and O3 as well as heating and cooling arising from dissipation of turbulent energy and eddy heat transport are taken into account. The calculated temperature and density height profiles are in good agreement with the respective profiles from CIRA 72 and Jacchia 1977 models. It is shown for the models considered that IR-radiative cooling by CO2 and NO in the 15μ and 5.3μ bands, not eddy turbulence provides the major loss of heat from 90 to 180km.  相似文献   
35.
36.
Space Science Reviews - Modern observatories have revealed the ubiquitous presence of magnetohydrodynamic waves in the solar corona. The propagating waves (in contrast to the standing waves) are...  相似文献   
37.
Alexeev  Igor I. 《Space Science Reviews》2003,107(1-2):141-148
Three ways of the energy transfer in the Earth's magnetosphere are studied. The solar wind MHD generator is an unique energy source for all magnetospheric processes. Field-aligned currents directly transport the energy and momentum of the solar wind plasma to the Earth's ionosphere. The magnetospheric lobe and plasma sheet convection generated by the solar wind is another magnetospheric energy source. Plasma sheet particles and cold ionospheric polar wind ions are accelerated by convection electric field. After energetic particle precipitation into the upper atmosphere the solar wind energy is transferred into the ionosphere and atmosphere. This way of the energy transfer can include the tail lobe magnetic field energy storage connected with the increase of the tail current during the southward IMF. After that the magnetospheric substorm occurs. The model calculations of the magnetospheric energy give possibility to determine the ground state of the magnetosphere, and to calculate relative contributions of the tail current, ring current and field-aligned currents to the magnetospheric energy. The magnetospheric substorms and storms manifest that the permanent solar wind energy transfer ways are not enough for the covering of the solar wind energy input into the magnetosphere. Nonlinear explosive processes are necessary for the energy transmission into the ionosphere and atmosphere. For understanding a relation between substorm and storm it is necessary to take into account that they are the concurrent energy transferring ways. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
38.
Space Science Reviews - The Scanning Habitable Environments with Raman and Luminescence for Organics and Chemicals (SHERLOC) is a robotic arm-mounted instrument onboard NASA’s Perseverance...  相似文献   
39.
OH(6-2) rotational temperature trends and solar cycle effects are studied. Observations were carried out at the Maimaga station (63.04°N, 129.51°E) for the period August 1999 to March 2013. Measurements were conducted with an infrared spectrograph. Temperatures were determined from intensity ratios in the P branch of the OH band. The monthly average residuals of temperature after the subtraction of the mean seasonal variation were used for a search for the solar component of temperature response. The dependence of temperatures on solar activity has been investigated using the Ottawa 10.7 cm flux as a proxy. A linear regression fitting on residual temperatures yields a solar cycle coefficient of 4.24 ± 1.39 K/100 solar flux units (SFU). The cross-correlation analyses showed that changes of the residual temperature follow changes of solar activity with a quasi-two year delay (25 months). The temperature response at the delay of 25 months reaches 7 K/100 SFU. The possible reason of the observed delay can be an influence of quasi-biennial oscillations (QBO) of the atmosphere on the relation of temperature and solar activity. The value of the temperature trend after the subtraction of seasonal and solar components is not statistically significant.  相似文献   
40.
For retrieval of atomic oxygen and atomic hydrogen via ozone observations in the extended mesopause region (~70–100?km) under nighttime conditions, an assumption on photochemical equilibrium of ozone is often used in research. In this work, an assumption on chemical equilibrium of ozone near mesopause region during nighttime is proofed. We examine 3D chemistry-transport model (CTM) annual calculations and determine the ratio between the correct (modeled) distributions of the O3 density and its equilibrium values depending on the altitude, latitude, and season.The results show that the retrieval of atomic oxygen and atomic hydrogen distributions using an assumption on ozone chemical equilibrium may lead to large errors below ~81–87?km. We give simple and clear semi-empirical criterion for practical utilization of the lower boundary of the area with ozone’s chemical equilibrium near mesopause.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号