首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   29篇
  免费   0篇
  国内免费   2篇
航空   18篇
航天技术   6篇
综合类   2篇
航天   5篇
  2022年   1篇
  2021年   2篇
  2018年   2篇
  2014年   3篇
  2013年   1篇
  2012年   2篇
  2011年   3篇
  2010年   2篇
  2009年   4篇
  2007年   3篇
  2006年   1篇
  2005年   1篇
  2003年   2篇
  2001年   1篇
  1997年   1篇
  1995年   2篇
排序方式: 共有31条查询结果,搜索用时 15 毫秒
11.
Several important issues are open in the field of solar variability and they wait their solution which up to now was attempted using critical ground-based instrumentations. However, accurate photometric data are attainable only from space. New observational material should be collected with high enough spatial and spectral resolution, covering the whole visible range of the electromagnetic spectrum as well infrared and ultraviolet to reconstruct the total solar irradiance: (1) the absolute contributions of different small-scale structural entities of the solar atmosphere from the white light flares and from micro-flares are still poorly known; (2) we do not know the absolute contributions of different structural elements of the solar atmosphere to the long-term and to the cyclic variations of the solar irradiance, including features of the polar regions of the Sun; (3) the variations of the chromospheric magnetic network are still poorly evaluated; (4) only scarce information is available about the spectral variations of different small-scale features in the high photosphere. Variability of the Sun in white light can be studied with higher spectral, spatial and time resolution using space-born telescopes, which are more appropriate for this purpose than ground based observatories because of better seeing conditions, no interference of the terrestrial atmosphere and a more precise calibration procedure. Scientific requirements for such observations and the possible experimental tools proposed for their solution. Suggested solar studies have broader astrophysical importance.  相似文献   
12.
In the coming years, opportunities for remote sensing of electron density in the Earth’s ionosphere will expand with the advent of Galileo, which will become part of the global navigation satellite system (GNSS). Methods for accurate electron density retrieval from radio occultation data continue to improve. We describe a new method of electron density retrieval using total electron content measurements obtained in low Earth orbit. This method can be applied to data from dual-frequency receivers tracking the GPS or Galileo transmitters. This simulation study demonstrates that the method significantly improves retrieval accuracy compared to the standard Abel inversion approach that assumes a spherically symmetric ionosphere. Our method incorporates horizontal gradient information available from global maps of Total Electron Content (TEC), which are available from the International GNSS Service (IGS) on a routine basis. The combination of ground and space measurements allows us to improve the accuracy of electron density profiles near the occultation tangent point in the E and F regions of the ionosphere.  相似文献   
13.
Partially ionized plasmas are found across the Universe in many different astrophysical environments. They constitute an essential ingredient of the solar atmosphere, molecular clouds, planetary ionospheres and protoplanetary disks, among other environments, and display a richness of physical effects which are not present in fully ionized plasmas. This review provides an overview of the physics of partially ionized plasmas, including recent advances in different astrophysical areas in which partial ionization plays a fundamental role. We outline outstanding observational and theoretical questions and discuss possible directions for future progress.  相似文献   
14.
This paper presents the review of results of the navigating experiments which have been carried out during flight of microgravitational space platform (MSP) Foton-M2 in May–June 2005. The brief characteristic of the created MIRAGE–M equipment consisting from magnitometric system and satellite radionavigation receiver is given. The measurements have allowed to restore unguided MSP movement and to estimate a level of microaccelerations (microgravitations) onboard during flight, and have provided precision time-position binding of the research experiments. The data from the equipments transmitted on the telemetering channel have allowed testing the information technologies of virtual support of experiments in space. Flight testing of the equipment has allowed make a conclusion on usefulness of accommodation onboard the small-sized auxiliary navigating system focused for work with users of research experiments. The experiments on MSP Foton-M2 are the development of experiments with MIRAGE equipment carried out in 1999 during flight time of MSP Foton-12 [N.D. Semkin, V.V. Ivanov, V.I. Abrushkin, V.L. Balakin, I.V. Belokonov, K.E. Voronov, The experiments with magnetic fields formed by technical equipment inside Foton-12 spacecraft: the results of the MIRAGE experiments, in: Proceedings of International Conference “Scientific and Technological Experiments on Russian Foton/Bion Recoverable Satellites: Results, Problems and Outlooks”, 25–30 June 2000, pp. 116–122; V.L. Balakin, I.V. Belokonov, V.V. Ivanov, “Determination of motion of spacecraft Foton-12 as a result of magnetic fields measurement in MIRAGE experiment”, pp. 231–238 (published in the same place)].Paper is executed within the framework of the grant of the Russian Fund of Fundamental Researches 06-08-00244.  相似文献   
15.
Lunar Reconnaissance Orbiter Overview: The Instrument Suite and Mission   总被引:6,自引:0,他引:6  
NASA’s Lunar Precursor Robotic Program (LPRP), formulated in response to the President’s Vision for Space Exploration, will execute a series of robotic missions that will pave the way for eventual permanent human presence on the Moon. The Lunar Reconnaissance Orbiter (LRO) is first in this series of LPRP missions, and plans to launch in October of 2008 for at least one year of operation. LRO will employ six individual instruments to produce accurate maps and high-resolution images of future landing sites, to assess potential lunar resources, and to characterize the radiation environment. LRO will also test the feasibility of one advanced technology demonstration package. The LRO payload includes: Lunar Orbiter Laser Altimeter (LOLA) which will determine the global topography of the lunar surface at high resolution, measure landing site slopes, surface roughness, and search for possible polar surface ice in shadowed regions, Lunar Reconnaissance Orbiter Camera (LROC) which will acquire targeted narrow angle images of the lunar surface capable of resolving meter-scale features to support landing site selection, as well as wide-angle images to characterize polar illumination conditions and to identify potential resources, Lunar Exploration Neutron Detector (LEND) which will map the flux of neutrons from the lunar surface to search for evidence of water ice, and will provide space radiation environment measurements that may be useful for future human exploration, Diviner Lunar Radiometer Experiment (DLRE) which will chart the temperature of the entire lunar surface at approximately 300 meter horizontal resolution to identify cold-traps and potential ice deposits, Lyman-Alpha Mapping Project (LAMP) which will map the entire lunar surface in the far ultraviolet. LAMP will search for surface ice and frost in the polar regions and provide images of permanently shadowed regions illuminated only by starlight. Cosmic Ray Telescope for the Effects of Radiation (CRaTER), which will investigate the effect of galactic cosmic rays on tissue-equivalent plastics as a constraint on models of biological response to background space radiation. The technology demonstration is an advanced radar (mini-RF) that will demonstrate X- and S-band radar imaging and interferometry using light weight synthetic aperture radar. This paper will give an introduction to each of these instruments and an overview of their objectives.  相似文献   
16.
New planned orbiter missions to Mercury have prompted renewed efforts to investigate the surface of Mercury via ground-based remote sensing. While the highest resolution instrumentation optical telescopes (e.g., HST) cannot be used at angular distances close to the Sun, advanced ground-based astronomical techniques and modern analytical and software can be used to obtain the resolved images of the poorly known or unknown part of Mercury. Our observations of the planet presented here were carried out in many observatories at morning and evening elongation of the planet. Stacking the acquired images of the hemisphere of Mercury, which was not observed by the Mariner 10 mission (1974–1975), is presented. Huge features found there change radically the existing hypothesis that the “continental” character of a surface may be attributed to the whole planet. We present the observational method, the data analysis approach, the resulting images and obtained properties of the Mercury’s surface.  相似文献   
17.
Alexeev  Igor I. 《Space Science Reviews》2003,107(1-2):141-148
Three ways of the energy transfer in the Earth's magnetosphere are studied. The solar wind MHD generator is an unique energy source for all magnetospheric processes. Field-aligned currents directly transport the energy and momentum of the solar wind plasma to the Earth's ionosphere. The magnetospheric lobe and plasma sheet convection generated by the solar wind is another magnetospheric energy source. Plasma sheet particles and cold ionospheric polar wind ions are accelerated by convection electric field. After energetic particle precipitation into the upper atmosphere the solar wind energy is transferred into the ionosphere and atmosphere. This way of the energy transfer can include the tail lobe magnetic field energy storage connected with the increase of the tail current during the southward IMF. After that the magnetospheric substorm occurs. The model calculations of the magnetospheric energy give possibility to determine the ground state of the magnetosphere, and to calculate relative contributions of the tail current, ring current and field-aligned currents to the magnetospheric energy. The magnetospheric substorms and storms manifest that the permanent solar wind energy transfer ways are not enough for the covering of the solar wind energy input into the magnetosphere. Nonlinear explosive processes are necessary for the energy transmission into the ionosphere and atmosphere. For understanding a relation between substorm and storm it is necessary to take into account that they are the concurrent energy transferring ways. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
18.
The Grid-Characteristic numerical Method (GCM) that is quite common in solving aero and hydrodynamic problems can also be applied for mechanics of solids. It allows to implement complex border and contact conditions, including the non-reflecting border and the destructible contact. Both this conditions are very important for the precise and effective modeling of Low-Velocity Impacts (LVI) on fiber and Fiber-Metal Laminates (FML) and the resulting Barely Visible Impact Damage (BVID) that influences the residual strength of a composite aircraft part. BVID is the type of damage that is not visible by the naked eye and can be hardly detected by a standard ultrasound equipment that is used for regular maintenance. It can appear during any weak impacts like bird strike or hail. Determining its influence on the residual strength of the part is very important to define the priorities of development of ultrasound diagnostics. In this paper, the GCM was applied for a full cycle of loading of an FML aircraft cover part. The FML consisted of a Carbon Fiber Reinforced Polymer (CFRP) and a single titanium layer on the upper surface. The cycle of loading in a single calculation consisted of an LVI caused by a small striker and a comparatively slow compressive in-plane loading. Three-dimensional patterns of velocity and stress distributions over the time of calculation are given. Destruction patterns, obtained via the Hashin failure criterion are given and analyzed.  相似文献   
19.
Some problems of methane-containing hydrocarbon fuel combustion are discussed. It seems that reduction of methane burnout zone length is one from main problems of designing new type engine. It is very important at the creation of combustion chambers of a rocket-ramjet engine for prospective space shuttle launch vehicles.  相似文献   
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号