首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5211篇
  免费   9篇
  国内免费   12篇
航空   2152篇
航天技术   1837篇
综合类   186篇
航天   1057篇
  2021年   40篇
  2019年   27篇
  2018年   115篇
  2017年   85篇
  2016年   82篇
  2015年   36篇
  2014年   130篇
  2013年   146篇
  2012年   133篇
  2011年   214篇
  2010年   144篇
  2009年   234篇
  2008年   280篇
  2007年   159篇
  2006年   125篇
  2005年   146篇
  2004年   148篇
  2003年   176篇
  2002年   207篇
  2001年   240篇
  2000年   86篇
  1999年   116篇
  1998年   133篇
  1997年   107篇
  1996年   141篇
  1995年   148篇
  1994年   115篇
  1993年   69篇
  1992年   105篇
  1991年   39篇
  1990年   37篇
  1989年   94篇
  1988年   37篇
  1987年   43篇
  1986年   48篇
  1985年   164篇
  1984年   128篇
  1983年   84篇
  1982年   114篇
  1981年   157篇
  1980年   41篇
  1978年   30篇
  1977年   33篇
  1976年   23篇
  1975年   33篇
  1974年   38篇
  1973年   23篇
  1971年   24篇
  1970年   22篇
  1969年   25篇
排序方式: 共有5232条查询结果,搜索用时 93 毫秒
941.
Quasi-static microaccelerations are estimated for a satellite specially designed to perform space experiments in the field of microgravity. Three modes of attitude motion of the spacecraft are considered: passive gravitational orientation, orbital orientation, and semi-passive gravitational orientation. In these modes the lengthwise axis of the satellite is directed along the local vertical, while solar arrays lie in the orbit plane. The second and third modes are maintained using electromechanical executive devices: flywheel engines or gyrodynes. Estimations of residual microaccelerations are performed with the help of mathematical modeling of satellite’s attitude motion under the action of gravitational and aerodynamic moments, as well as the moment produced by the gyro system. It is demonstrated that all modes ensure rather low level of quasi-static microaccelerations on the satellite and provide for a fairly narrow region of variation for the vector of residual microacceleration. The semi-passive gravitational orientation ensures also a limited proper angular momentum of the gyro system.  相似文献   
942.
In each polar cap (PC) we mark out “old PC” observed during quiet time before the event under consideration, and “new PC” that emerges during the substorm framing the old one and expanding the PC total area. Old and new PCs are the areas for the magnetosphere old and new tail lobes, respectively. The new lobe variable magnetic flux Ψ1 is usually assumed to be active, i.e. it provides the electromagnetic energy flux (Poynting flux) ɛ′ transport from solar wind (SW) into the magnetosphere. The old lobe magnetic flux Ψ2 is supposed to be passive, i.e. it remains constant during the disturbance and does not participate in the transporting process which would mean the old PC electric field absolute screening from the convection electric field created by the magnetopause reconnection. In fact, screening is observed, but far from absolute. We suggest a model of screening and determine its quantitative characteristics in the selected superstorm. The coefficient of a screening is the β = Ψ202, where Ψ02 = const is open magnetic flux through the old PC measured prior to the substorm, and Ψ2 is variable magnetic flux through the same area measured during the substorm. We consider three various regimes of disturbance. In each, the coefficient β decreased during the loading phase and increased at the unloading phase, but the rates and amplitudes of variations exhibited a strong dependence on the regime. We interpreted decrease in β as a result of involving the old PC magnetic flux Ψ2, which was considered to be constant earlier, in the Poynting flux ɛ′ transport process from solar wind into the magnetosphere. Transport process weakening at the subsequent unloading phase creates increase in β. Estimates showed that coefficient β during each regime and the computed Poynting flux ɛ′ varied manifolds. In general, unlike the existing substorm conception, the new scenario describes an unknown earlier of tail lobe activation process during a substorm growth phase that effectively increases the accumulated tail energy for the expansion and recovery phases.  相似文献   
943.
While the international community has acted forcefully since World War II to protect sites and objects of cultural or historic significance on Earth, little attention has been paid to the same kinds of sites and objects in space. There are important ethical and scholarly reasons for wanting to preserve sites and in situ objects in off-Earth contexts from destruction or commercial exploitation. Innovative space research equipment, such as spacecraft, satellites, and space stations, and the locations of historic missions, such as Tranquility Base, therefore deserve formal international recognition and protection. Appropriate models for developing a comprehensive protective scheme can be found in existing international protocols, especially the 1959 Antarctic Treaty (and later additions), the 1970 UNESCO Convention on Cultural Property, the 1972 UNESCO World Heritage Convention, and the 2001 UNESCO Convention on the Underwater Cultural Heritage. In addition, space agencies and professional organizations can mandate adequate and ethical planning for the post-operational phases of space missions to include arrangements for heritage protection.  相似文献   
944.
The Philae lander is part of the Rosetta mission to investigate comet 67P/Churyumov-Gerasimenko. It will use a harpoon like device to anchor itself onto the surface. The anchor will perhaps reach depths of 1–2 m. In the anchor is a temperature sensor that will measure the boundary temperature as part of the MUPUS experiment. As the anchor attains thermal equilibrium with the comet ice it may be possible to extract the thermal properties of the surrounding ice, such as the thermal diffusivity, by using the temperature sensor data. The anchor is not an optimal shape for a thermal probe and application of analytical solutions to the heat equation is inappropriate. We prepare a numerical model to fit temperature sensor data and extract the thermal diffusivity. Penetrator probes mechanically compact the material immediately surrounding them as they enter the target. If the thermal properties, composition and dimensions of the penetrator are known, then the thermal properties of this pristine material may be recovered although this will be a challenging measurement. We report on investigations, using a numerical thermal model, to simulate a variety of scenarios that the anchor may encounter and how they will affect the measurement.  相似文献   
945.
An accuracy of geocenter motion estimation is strongly dependent on the geodetic network size and stations distribution over the Earth’s surface. From this point of view DORIS system has an advantage, as its ground network of beacons consists of more than 50 sites, equally distributed over the Earth’s surface. Aiming to study variations of the geocenter movements, the results of DORIS data analysis for the time span 1993.0–2009.0 (inawd06.snx series), performed at the Analysis Centre of the Institute of astronomy of the Russian Academy of Sciences, have been used. DORIS data processing was made with GIPSY/OASIS II software, developed by Jet Propulsion Laboratory and modified for DORIS data processing by Institute Géographique National. Standard deviations of stations coordinates are estimated at the level 0.5–4.0 cm (internal consistency), depending on the number of satellites used in the solution. RMS of estimated components of the DORIS satellites orbits, compared with the solutions of other IDS analysis centres, do not exceed 1–2 cm. Weekly solutions for coordinates have been transformed from free network solutions (inawd06.snx series) to a well defined terrestrial reference frame ITRF2005 with the use of seven parameters of Helmert transformation, which were examined with a view to study variations of the geocenter movements (ina05wd01.geoc time series). In order to estimate linear trend, amplitudes, periods and phases of geocenter variation a method of linear regression was applied. The evaluated amplitudes of annual variations are of the order of 5–7 mm for X and Y components and 27–29 mm for Z component. Semi-annual amplitudes are also noticeable in all components (1–34 mm for X, Y and Z components). Secular trends in the DORIS geocenter coordinates are: −1.2, −0.1 and −0.3 mm/year for X, Y and Z directions respectively.  相似文献   
946.
Based on the results of plasma and magnetic measurements at three different points of the heliosphere and telescopic observations of the Sun from these points we study simultaneously high-speed streams (HSS) of the solar wind (SW) near the Earths’s orbit and coronal holes (CH) that have generated them. The data from spacecraft STEREO-A, STEREO-B, ACE, and SOHO are used together with ground-based observations from March 2007 to May 2008. In this period there existed HSS whose sources represented CH of various polarity, geometry, and location relative to the heliographic and heliomagnetic equators. Dependence of SW parameters on mutual positions of spacecraft with respect to CH and heliospheric current sheet, and also on heliolatitude and geometry of the CH is revealed. A difference of more than 5° in locations of spacecraft with respect to the heliospheric current sheet in November 2007 allowed us to discover a heliolatitude velocity gradient of the SW streams between the STEREO-A and STEREO-B spacecraft. On the average this gradient at that time was equal to 20 km/s per degree. Substantial variations in SW streams associated with variations of the HSS SW sources during a few hours or days were also observed. This variability makes it difficult to use the data of spacecraft STEREO-B for sufficiently accurate prediction of SW properties in the near-Earth space by the method of simple advanced ti me shift due to heliolongitude difference between a spacecraft and the Earth even in solar activity minimum.  相似文献   
947.
The results of measurements of fluxes and spectra carried out using the RELEC (relativistic electrons) equipment onboard the VERNOV satellite in the second half of 2014 are presented. The VERNOV satellite was launched on July 8, 2014 in a sun-synchronous orbit with an altitude from 640 to 830 km and an inclination of 98.4°. Scientific information from the satellite was first received on July 20, 2014. The comparative analysis of electron fluxes using data from RELEC and using experimental data on the electron detection by satellites Elektro-L (positioned at a geostationary orbit) and Meteor-M no. 2 (positioned at a circular polar orbit at an altitude of about 800 km as the VERNOV satellite) will make it possible to study the spatial distribution pattern of energetic electrons in near-Earth space in more detail.  相似文献   
948.
949.
Developing successful and optimal solutions to mitigating the hazards of severe space radiation in deep space long duration missions is critical for the success of deep-space explorations. A recent report (Tripathi et al., 2008) had explored the feasibility of using electrostatic shielding. Here, we continue to extend the electrostatic shielding strategy and examine a hybrid configuration that utilizes both electrostatic and magnetostatic fields. The main advantages of this system are shown to be: (i) a much better shielding and repulsion of incident ions from both solar particle events (SPE) and galactic cosmic rays (GCR), (ii) reductions in the power requirement for re-charging the electrostatic sub-system, and (iii) low requirements of the magnetic fields that are well below the thresholds set for health and safety for long-term exposures. Furthermore, our results show transmission levels reduced to levels as low as 30% for energies around 1000 MeV, and near total elimination of SPE radiation by these hybrid configurations. It is also shown that the power needed to replenish the electrostatic charges due to particle hits from the GCR and SPE radiation is minimal.  相似文献   
950.
A very strong interplanetary and magnetospheric disturbance observed on 7–13 November 2004 can be regarded as one of the strongest events during the entire period of space observations. In this paper we report on the studies of cosmic ray cutoff rigidity variations during 7–13 November 2004 showing how storm conditions can affect the direct cosmic ray access to the inner magnetosphere. Effective cutoff rigidities have been calculated for selected points on the ground by tracing trajectories of cosmic ray particles through the magnetospheric magnetic field of the “storm-oriented” Tsyganenko 2003 model. Cutoff rigidity variations have also been determined by the spectrographic global survey method on the basis of experimental data of the neutron monitor network. Relations between the calculated and experimental cutoff rigidities and the geomagnetic Dst-index and interplanetary parameters have been investigated. Correlation coefficients between the cutoff rigidities obtained by the trajectory tracing method and the spectrographic global survey method have been found to be in the limits 0.76–0.89 for all stations except the low-latitude station Tokyo (0.35). The most pronounced correlation has been revealed between the cutoff rigidities that exhibited a very large variation of ∼1–1.5 GV during the magnetic storm and the Dst index.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号