首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5383篇
  免费   7篇
  国内免费   14篇
航空   2296篇
航天技术   1930篇
综合类   15篇
航天   1163篇
  2021年   45篇
  2018年   108篇
  2017年   91篇
  2016年   82篇
  2015年   37篇
  2014年   118篇
  2013年   150篇
  2012年   139篇
  2011年   230篇
  2010年   167篇
  2009年   250篇
  2008年   294篇
  2007年   161篇
  2006年   117篇
  2005年   161篇
  2004年   176篇
  2003年   178篇
  2002年   123篇
  2001年   187篇
  2000年   87篇
  1999年   111篇
  1998年   137篇
  1997年   102篇
  1996年   106篇
  1995年   143篇
  1994年   151篇
  1993年   79篇
  1992年   101篇
  1991年   39篇
  1990年   52篇
  1989年   93篇
  1988年   41篇
  1987年   42篇
  1986年   58篇
  1985年   173篇
  1984年   132篇
  1983年   107篇
  1982年   103篇
  1981年   195篇
  1980年   45篇
  1979年   39篇
  1978年   43篇
  1977年   40篇
  1976年   36篇
  1975年   47篇
  1974年   43篇
  1973年   37篇
  1972年   43篇
  1971年   25篇
  1970年   25篇
排序方式: 共有5404条查询结果,搜索用时 114 毫秒
281.
A beamforming technique involving cross correlation of the outputs of two directional arrays is investigated. The performance characteristics of the crossarray system are determined and related to the characteristics of the two individual arrays. It is found that the crossarray beam pattern is the average (in decibels) of the beam patterns of the individual arrays, and that the crossarray gain (rejection of spatially distributed noise) is 1.5 dB greater than the average (in decibels) of the individual array gains. The most interesting applications for this system may be those where the two arrays are quite different, as in the case of a parametric acoustic receiving array (PARRAY) and a broadside line array.  相似文献   
282.
Although the auroral substorm has been long regarded as a manifestation of the magnetospheric substorm, a direct relation of active auroras to certain magnetospheric processes is still debatable. To investigate the relationship, we combine the data of the UV imager onboard the Polar satellite with plasma and magnetic field measurements by the Geotail spacecraft. The poleward edge of the auroral bulge, as determined from the images obtained at the LHBL passband, is found to be conjugated with the region where the oppositely directed fast plasma flows observed in the near-Earth plasma sheet during substorms are generated. We conclude that the auroras forming the bulge are due to the near-Earth reconnection process. This implies that the magnetic flux through the auroral bulge is equal to the flux dissipated in the magnetotail during the substorm. Comparison of the magnetic flux through the auroral bulge with the magnetic flux accumulated in the tail lobe during the growth phase shows that these parameters have the comparable values. This is a clear evidence of the loading–unloading scheme of substorm development. It is shown that the area of the auroral bulge developing during substorm is proportional to the total (magnetic plus plasma) pressure decrease in the magnetotail. These findings stress the importance of auroral bulge observations for monitoring of substorm intensity in terms of the magnetic flux and energy dissipation.  相似文献   
283.
CMEs have been observed for over 30 years with a wide variety of instruments. It is now possible to derive detailed and quantitative information on CME morphology, velocity, acceleration and mass. Flares associated with CMEs are observed in X-rays, and several different radio signatures are also seen. Optical and UV spectra of CMEs both on the disk and at the limb provide velocities along the line of sight and diagnostics for temperature, density and composition. From the vast quantity of data we attempt to synthesize the current state of knowledge of the properties of CMEs, along with some specific observed characteristics that illuminate the physical processes occurring during CME eruption. These include the common three-part structures of CMEs, which is generally attributed to compressed material at the leading edge, a low-density magnetic bubble and dense prominence gas. Signatures of shock waves are seen, but the location of these shocks relative to the other structures and the occurrence rate at the heights where Solar Energetic Particles are produced remains controversial. The relationships among CMEs, Moreton waves, EIT waves, and EUV dimming are also cloudy. The close connection between CMEs and flares suggests that magnetic reconnection plays an important role in CME eruption and evolution. We discuss the evidence for reconnection in current sheets from white-light, X-ray, radio and UV observations. Finally, we summarize the requirements for future instrumentation that might answer the outstanding questions and the opportunities that new space-based and ground-based observatories will provide in the future.  相似文献   
284.
We have evaluated the Lyman-α limb emission from the exospheric hydrogen of Mars measured by the neutral particle detector of the ASPERA-3 instrument on Mars Express in 2004 at low solar activity (solar activity index = 42, F10.7=100). We derive estimates for the hydrogen exobase density, n H = 1010 m?3, and for the apparent temperature, T > 600 K. We conclude that the limb emission measurement is dominated by a hydrogen component that is considerably hotter than the bulk temperature at the exobase. The derived values for the exosphere density and temperature are compared with similar measurements done by the Mariner space probes in the 1969. The values found with Mars Express and Mariner data are brought in a broader context of exosphere models including the possibility of having two hydrogen components in the Martian exosphere. The present observation of the Martian hydrogen exosphere is the first one at high altitudes during low solar activity, and shows that for low solar activity exospheric densities are not higher than for high solar activity.  相似文献   
285.
We will discuss the observed, heavily damped transversal oscillations of coronal loops. These oscillations are often modeled as transversal kink oscillations in a cylinder. Several features are added to the classical cylindrical model. In our models we include loop curvature, longitudinal density stratification, and highly inhomogeneous radial density profiles. In this paper, we will first give an overview of recently obtained results, both analytically and numerically. After that, we shed a light on the computational aspects of the modeling process. In particular, we will focus on the parallellization of the numerical codes.  相似文献   
286.
The results of research in a process of a probe rocket berthing to an asteroid are presented. Control laws were obtained as solutions of three problems, namely berthing considering transient processes in a rocket engine, fastest berthing with regard to fuel consumption and berthing in a scheduled time considering fuel consumption. A program trajectory obtained at solving of the first problem is suitable for mathematical modeling of berthing with the feedback control law and stabilization of angular motion. The solutions of the problems are reduced to simple formulas for controlling parameters calculation in the corresponding structures of control laws. The results can be applied in designing promising space vehicles intended for berthing to other space objects.  相似文献   
287.
Cole  David G. 《Space Science Reviews》2003,107(1-2):295-302
Terrestrial technology is now, and increasingly, sensitive to space weather. Most space weather is caused by solar storms and the resulting changes to the Earth's radiation environment and the magnetosphere. The Sun as the driver of space weather is under intense observation but remains to be adequately modelled. Recent spacecraft measurements are greatly improving models of solar activity, the interaction of the solar wind with the magnetosphere, and models of the radiation belts. In-situ data updates the basic magnetospheric model to provide specific details of high-energy electron flux at satellite orbits. Shock wave effects at the magnetopause can also be coarsely predicted. However, the specific geomagnetic effects at ground level depend on the calculation of magnetic and electric fields and further improvements are needed. New work on physical models is showing promise of raising geomagnetic and ionospheric predictability above the synoptic climatological level. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
288.
A magnetohydrodynamic model of the solar wind flow is constructed using a kinematic approach. It is shown that a phenomenological conductivity of the solar wind plasma plays a key role in the forming of the interplanetary magnetic field (IMF) component normal to the ecliptic plane. This component is mostly important for the magnetospheric dynamics which is controlled by the solar wind electric field. A simple analytical solution for the problem of the solar wind flow past the magnetosphere is presented. In this approach the magnetopause and the Earth's bow shock are approximated by the paraboloids of revolution. Superposition of the effects of the bulk solar wind plasma motion and the magnetic field diffusion results in an incomplete screening of the IMF by the magnetopause. It is shown that the normal to the magnetopause component of the solar wind magnetic field and the tangential component of the electric field penetrated into the magnetosphere are determined by the quarter square of the magnetic Reynolds number. In final, a dynamic model of the magnetospheric magnetic field is constructed. This model can describe the magnetosphere in the course of the severe magnetic storm. The conditions under which the magnetospheric magnetic flux structure is unstable and can drive the magnetospheric substorm are discussed. The model calculations are compared with the observational data for September 24–26, 1998 magnetic storm (Dst min=−205 nT) and substorm occurred at 02:30 UT on January 10, 1997. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
289.
Frey  H.U.  Mende  S.B.  Immel  T.J.  Gérard  J.-C.  Hubert  B.  Habraken  S.  Spann  J.  Gladstone  G.R.  Bisikalo  D.V.  Shematovich  V.I. 《Space Science Reviews》2003,109(1-4):255-283
Direct imaging of the magnetosphere by instruments on the IMAGE spacecraft is supplemented by simultaneous observations of the global aurora in three far ultraviolet (FUV) wavelength bands. The purpose of the multi-wavelength imaging is to study the global auroral particle and energy input from the magnetosphere into the atmosphere. This paper describes the method for quantitative interpretation of FUV measurements. The Wide-Band Imaging Camera (WIC) provides broad band ultraviolet images of the aurora with maximum spatial resolution by imaging the nitrogen lines and bands between 140 and 180 nm wavelength. The Spectrographic Imager (SI), a dual wavelength monochromatic instrument, images both Doppler-shifted Lyman-α emissions produced by precipitating protons, in the SI-12 channel and OI 135.6 nm emissions in the SI-13 channel. From the SI-12 Doppler shifted Lyman-α images it is possible to obtain the precipitating proton flux provided assumptions are made regarding the mean energy of the protons. Knowledge of the proton (flux and energy) component allows the calculation of the contribution produced by protons in the WIC and SI-13 instruments. Comparison of the corrected WIC and SI-13 signals provides a measure of the electron mean energy, which can then be used to determine the electron energy flux. To accomplish this, reliable emission modeling and instrument calibrations are required. In-flight calibration using early-type stars was used to validate the pre-flight laboratory calibrations and determine long-term trends in sensitivity. In general, very reasonable agreement is found between in-situ measurements and remote quantitative determinations.  相似文献   
290.
Moore  T.E.  Collier  M.R.  Fok  M.-C.  Fuselier  S.A.  Khan  H.  Lennartsson  W.  Simpson  D.G.  Wilson  G.R.  Chandler  M.O. 《Space Science Reviews》2003,109(1-4):351-371
Development of the low energy neutral atom (LENA) imager was originally motivated by a need to remotely sense plasma heating in the topside ionosphere, with the goal of greatly enhanced temporal resolution of an otherwise familiar phenomenon. During ground test and calibration, the LENA imager was found to respond to neutral atoms with energies well above its nominal energy range of 10–750 eV, up to at least 3–4 keV, owing to sputtering interactions with its conversion surface. On orbit, LENA has been found to respond to a ubiquitous neutral atom component of the solar wind, to the neutral atoms formed by magnetosheath interactions with the geocorona during periods of high solar wind pressure, and to the interstellar neutral atoms flowing through the heliosphere during the season of maximal relative wind velocity between spacecraft and interstellar medium. LENA imaging has thus emerged as a promising new tool for studying the interplanetary medium and its interaction with the magnetosphere, in addition to the ionospheric heating and outflow that result from this interaction. LENA emissions from the ionosphere consist of a fast component that can be observed at high altitudes, and slower components that evidently create a quasi-trapped extended superthermal exosphere. The more energetic emissions are responsive to solar wind energy inputs on time scales of a few minutes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号